IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0047256.html
   My bibliography  Save this article

Design Principles of a Genetic Alarm Clock

Author

Listed:
  • Jaroslav Albert
  • Marianne Rooman

Abstract

Turning genes on and off is a mechanism by which cells and tissues make phenotypic decisions. Gene network motifs capable of supporting two or more steady states and thereby providing cells with a plurality of possible phenotypes are referred to as genetic switches. Modeled on the bases of naturally occurring genetic networks, synthetic biologists have successfully constructed artificial switches, thus opening a door to new possibilities for improvement of the known, but also the design of new synthetic genetic circuits. One of many obstacles to overcome in such efforts is to understand and hence control intrinsic noise which is inherent in all biological systems. For some motifs the noise is negligible; for others, fluctuations in the particle number can be comparable to its average. Due to their slowed dynamics, motifs with positive autoregulation tend to be highly sensitive to fluctuations of their chemical environment and are in general very noisy, especially during transition (switching). In this article we use stochastic simulations (Gillespie algorithm) to model such a system, in particular a simple bistable motif consisting of a single gene with positive autoregulation. Due to cooperativety, the dynamical behavior of this kind of motif is reminiscent of an alarm clock – the gene is (nearly) silent for some time after it is turned on and becomes active very suddenly. We investigate how these sudden transitions are affected by noise and show that under certain conditions accurate timing can be achieved. We also examine how promoter complexity influences the accuracy of this timing mechanism.

Suggested Citation

  • Jaroslav Albert & Marianne Rooman, 2012. "Design Principles of a Genetic Alarm Clock," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
  • Handle: RePEc:plo:pone00:0047256
    DOI: 10.1371/journal.pone.0047256
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047256
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0047256&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0047256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    2. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    3. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    4. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    6. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    8. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    9. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Bonassi Fernando V. & You Lingchong & West Mike, 2011. "Bayesian Learning from Marginal Data in Bionetwork Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, October.
    11. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.
    12. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    13. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.
    14. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    16. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    17. Nagarajan, Radhakrishnan, 2007. "Delay estimation in a two-node acyclic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 725-737.
    18. Takako Kaneko-Kawano & Fugo Takasu & Honda Naoki & Yuichi Sakumura & Shin Ishii & Takahiro Ueba & Akinori Eiyama & Aiko Okada & Yoji Kawano & Kenji Suzuki, 2012. "Dynamic Regulation of Myosin Light Chain Phosphorylation by Rho-kinase," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-10, June.
    19. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Global synchronization for a class of dynamical complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 543-556.
    20. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0047256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.