IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0046128.html
   My bibliography  Save this article

Length Bias Correction in Gene Ontology Enrichment Analysis Using Logistic Regression

Author

Listed:
  • Gu Mi
  • Yanming Di
  • Sarah Emerson
  • Jason S Cumbie
  • Jeff H Chang

Abstract

When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called “length bias”, will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

Suggested Citation

  • Gu Mi & Yanming Di & Sarah Emerson & Jason S Cumbie & Jeff H Chang, 2012. "Length Bias Correction in Gene Ontology Enrichment Analysis Using Logistic Regression," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-10, October.
  • Handle: RePEc:plo:pone00:0046128
    DOI: 10.1371/journal.pone.0046128
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046128
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0046128&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0046128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Di Yanming & Schafer Daniel W & Cumbie Jason S & Chang Jeff H, 2011. "The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    2. Gu Mi & Yanming Di & Daniel W Schafer, 2015. "Goodness-of-Fit Tests and Model Diagnostics for Negative Binomial Regression of RNA Sequencing Data," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-16, March.
    3. Lund Steven P. & Nettleton Dan & McCarthy Davis J. & Smyth Gordon K., 2012. "Detecting Differential Expression in RNA-sequence Data Using Quasi-likelihood with Shrunken Dispersion Estimates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-44, October.
    4. Gu Mi & Yanming Di, 2015. "The Level of Residual Dispersion Variation and the Power of Differential Expression Tests for RNA-Seq Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-25, April.
    5. Jungsoo Gim & Sungho Won & Taesung Park, 2016. "LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    6. Kotoka Ekua & Orr Megan, 2017. "Modifying SAMseq to account for asymmetry in the distribution of effect sizes when identifying differentially expressed genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 333-347, December.
    7. Di Yanming & Emerson Sarah C. & Schafer Daniel W. & Kimbrel Jeffrey A. & Chang Jeff H., 2013. "Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 49-70, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0046128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.