IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0044635.html
   My bibliography  Save this article

A Predictive Framework for Integrating Disparate Genomic Data Types Using Sample-Specific Gene Set Enrichment Analysis and Multi-Task Learning

Author

Listed:
  • Brian D Bennett
  • Qing Xiong
  • Sayan Mukherjee
  • Terrence S Furey

Abstract

Understanding the root molecular and genetic causes driving complex traits is a fundamental challenge in genomics and genetics. Numerous studies have used variation in gene expression to understand complex traits, but the underlying genomic variation that contributes to these expression changes is not well understood. In this study, we developed a framework to integrate gene expression and genotype data to identify biological differences between samples from opposing complex trait classes that are driven by expression changes and genotypic variation. This framework utilizes pathway analysis and multi-task learning to build a predictive model and discover pathways relevant to the complex trait of interest. We simulated expression and genotype data to test the predictive ability of our framework and to measure how well it uncovered pathways with genes both differentially expressed and genetically associated with a complex trait. We found that the predictive performance of the multi-task model was comparable to other similar methods. Also, methods like multi-task learning that considered enrichment analysis scores from both data sets found pathways with both genetic and expression differences related to the phenotype. We used our framework to analyze differences between estrogen receptor (ER) positive and negative breast cancer samples. An analysis of the top 15 gene sets from the multi-task model showed they were all related to estrogen, steroids, cell signaling, or the cell cycle. Although our study suggests that multi-task learning does not enhance predictive accuracy, the models generated by our framework do provide valuable biological pathway knowledge for complex traits.

Suggested Citation

  • Brian D Bennett & Qing Xiong & Sayan Mukherjee & Terrence S Furey, 2012. "A Predictive Framework for Integrating Disparate Genomic Data Types Using Sample-Specific Gene Set Enrichment Analysis and Multi-Task Learning," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0044635
    DOI: 10.1371/journal.pone.0044635
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044635
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0044635&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0044635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea H. Bild & Guang Yao & Jeffrey T. Chang & Quanli Wang & Anil Potti & Dawn Chasse & Mary-Beth Joshi & David Harpole & Johnathan M. Lancaster & Andrew Berchuck & John A. Olson & Jeffrey R. Marks &, 2006. "Oncogenic pathway signatures in human cancers as a guide to targeted therapies," Nature, Nature, vol. 439(7074), pages 353-357, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjie Su & Byung-Jun Yoon & Edward R Dougherty, 2009. "Accurate and Reliable Cancer Classification Based on Probabilistic Inference of Pathway Activity," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    2. Carey K Anders & Chaitanya R Acharya & David S Hsu & Gloria Broadwater & Katherine Garman & John A Foekens & Yi Zhang & Yixin Wang & Kelly Marcom & Jeffrey R Marks & Sayan Mukherjee & Joseph R Nevins , 2008. "Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-8, January.
    3. Verena Jabs & Karolina Edlund & Helena König & Marianna Grinberg & Katrin Madjar & Jörg Rahnenführer & Simon Ekman & Michael Bergkvist & Lars Holmberg & Katja Ickstadt & Johan Botling & Jan G Hengstle, 2017. "Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    4. Eun Sung Park & Ju-Seog Lee & Hyun Goo Woo & Fenghuang Zhan & Joanna H Shih & John D Shaughnessy Jr. & J Frederic Mushinski, 2007. "Heterologous Tissue Culture Expression Signature Predicts Human Breast Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-16, January.
    5. David Lindgren & Gottfrid Sjödahl & Martin Lauss & Johan Staaf & Gunilla Chebil & Kristina Lövgren & Sigurdur Gudjonsson & Fredrik Liedberg & Oliver Patschan & Wiking Månsson & Mårten Fernö & Mattias , 2012. "Integrated Genomic and Gene Expression Profiling Identifies Two Major Genomic Circuits in Urothelial Carcinoma," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-11, June.
    6. Matthias Weber & Martin Schumacher & Harald Binder, 2014. "Regularized Regression Incorporating Network Information: Simultaneous Estimation of Covariate Coefficients and Connection Signs," Tinbergen Institute Discussion Papers 14-089/I, Tinbergen Institute.
    7. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
    8. Xuan Bich Trinh & Wiebren A A Tjalma & Luc Y Dirix & Peter B Vermeulen & Dieter J Peeters & Dimcho Bachvarov & Marie Plante & Els M Berns & Jozien Helleman & Steven J Van Laere & Peter A van Dam, 2011. "Microarray-Based Oncogenic Pathway Profiling in Advanced Serous Papillary Ovarian Carcinoma," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-9, July.
    9. Lucas Joseph & Carvalho Carlos & West Mike, 2009. "A Bayesian Analysis Strategy for Cross-Study Translation of Gene Expression Biomarkers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-28, February.
    10. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    11. Andrew E Teschendorff & Michel Journée & Pierre A Absil & Rodolphe Sepulchre & Carlos Caldas, 2007. "Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-16, August.
    12. Haleh Yasrebi & Peter Sperisen & Viviane Praz & Philipp Bucher, 2009. "Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-14, October.
    13. Hung-Chia Chen & Wen Zou & Tzu-Pin Lu & James J Chen, 2014. "A Composite Model for Subgroup Identification and Prediction via Bicluster Analysis," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.
    14. Dennis Kostka & Rainer Spang, 2008. "Microarray Based Diagnosis Profits from Better Documentation of Gene Expression Signatures," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-6, February.
    15. Ilya Kupershmidt & Qiaojuan Jane Su & Anoop Grewal & Suman Sundaresh & Inbal Halperin & James Flynn & Mamatha Shekar & Helen Wang & Jenny Park & Wenwu Cui & Gregory D Wall & Robert Wisotzkey & Satnam , 2010. "Ontology-Based Meta-Analysis of Global Collections of High-Throughput Public Data," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-13, September.
    16. Kuang Du & Shiyou Wei & Zhi Wei & Dennie T. Frederick & Benchun Miao & Tabea Moll & Tian Tian & Eric Sugarman & Dmitry I. Gabrilovich & Ryan J. Sullivan & Lunxu Liu & Keith T. Flaherty & Genevieve M. , 2021. "Pathway signatures derived from on-treatment tumor specimens predict response to anti-PD1 blockade in metastatic melanoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    17. Ruoqi Peng & Sriram Sridhar & Gaurav Tyagi & Jonathan E Phillips & Rosario Garrido & Paul Harris & Lisa Burns & Lorena Renteria & John Woods & Leena Chen & John Allard & Palanikumar Ravindran & Hans B, 2013. "Bleomycin Induces Molecular Changes Directly Relevant to Idiopathic Pulmonary Fibrosis: A Model for “Active” Disease," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    18. Dario Zimmerli & Chiara S. Brambillasca & Francien Talens & Jinhyuk Bhin & Renske Linstra & Lou Romanens & Arkajyoti Bhattacharya & Stacey E. P. Joosten & Ana Moises Silva & Nuno Padrao & Max D. Welle, 2022. "MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Balázs Győrffy & Pawel Surowiak & Jan Budczies & András Lánczky, 2013. "Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    20. Mariëlle I Gallegos Ruiz & Karijn Floor & Paul Roepman & José A Rodriguez & Gerrit A Meijer & Wolter J Mooi & Ewa Jassem & Jacek Niklinski & Thomas Muley & Nico van Zandwijk & Egbert F Smit & Kristin , 2008. "Integration of Gene Dosage and Gene Expression in Non-Small Cell Lung Cancer, Identification of HSP90 as Potential Target," PLOS ONE, Public Library of Science, vol. 3(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0044635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.