IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040916.html
   My bibliography  Save this article

Teamwork: Improved eQTL Mapping Using Combinations of Machine Learning Methods

Author

Listed:
  • Marit Ackermann
  • Mathieu Clément-Ziza
  • Jacob J Michaelson
  • Andreas Beyer

Abstract

Expression quantitative trait loci (eQTL) mapping is a widely used technique to uncover regulatory relationships between genes. A range of methodologies have been developed to map links between expression traits and genotypes. The DREAM (Dialogue on Reverse Engineering Assessments and Methods) initiative is a community project to objectively assess the relative performance of different computational approaches for solving specific systems biology problems. The goal of one of the DREAM5 challenges was to reverse-engineer genetic interaction networks from synthetic genetic variation and gene expression data, which simulates the problem of eQTL mapping. In this framework, we proposed an approach whose originality resides in the use of a combination of existing machine learning algorithms (committee). Although it was not the best performer, this method was by far the most precise on average. After the competition, we continued in this direction by evaluating other committees using the DREAM5 data and developed a method that relies on Random Forests and LASSO. It achieved a much higher average precision than the DREAM best performer at the cost of slightly lower average sensitivity.

Suggested Citation

  • Marit Ackermann & Mathieu Clément-Ziza & Jacob J Michaelson & Andreas Beyer, 2012. "Teamwork: Improved eQTL Mapping Using Combinations of Machine Learning Methods," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-8, July.
  • Handle: RePEc:plo:pone00:0040916
    DOI: 10.1371/journal.pone.0040916
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040916
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040916&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karl W. Broman & Terence P. Speed, 2002. "A model selection approach for the identification of quantitative trait loci in experimental crosses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 641-656, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikola Simidjievski & Ljupčo Todorovski & Sašo Džeroski, 2016. "Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frommlet, Florian & Ruhaltinger, Felix & Twaróg, Piotr & Bogdan, Małgorzata, 2012. "Modified versions of Bayesian Information Criterion for genome-wide association studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1038-1051.
    2. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    3. Frommlet Florian & Ljubic Ivana & Arnardóttir Helga Björk & Bogdan Malgorzata, 2012. "QTL Mapping Using a Memetic Algorithm with Modifications of BIC as Fitness Function," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-26, May.
    4. Zehua Chen & Jianbin Liu, 2009. "Mixture Generalized Linear Models for Multiple Interval Mapping of Quantitative Trait Loci in Experimental Crosses," Biometrics, The International Biometric Society, vol. 65(2), pages 470-477, June.
    5. Gilmour, A.R., 2007. "Mixed model regression mapping for QTL detection in experimental crosses," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3749-3764, May.
    6. Huang, B. Emma & Shah, Rohan & George, Andrew W., 2012. "dlmap: An R Package for Mixed Model QTL and Association Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i06).
    7. C. M. Kendziorski & M. Chen & M. Yuan & H. Lan & A. D. Attie, 2006. "Statistical Methods for Expression Quantitative Trait Loci (eQTL) Mapping," Biometrics, The International Biometric Society, vol. 62(1), pages 19-27, March.
    8. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    9. Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
    10. repec:jss:jstsof:28:i02 is not listed on IDEAS
    11. Małgorzata Bogdan & Florian Frommlet & Przemysław Biecek & Riyan Cheng & Jayanta K. Ghosh & R.W. Doerge, 2008. "Extending the Modified Bayesian Information Criterion (mBIC) to Dense Markers and Multiple Interval Mapping," Biometrics, The International Biometric Society, vol. 64(4), pages 1162-1169, December.
    12. Erhardt Vinzenz & Bogdan Malgorzata & Czado Claudia, 2010. "Locating Multiple Interacting Quantitative Trait Loci with the Zero-Inflated Generalized Poisson Regression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-27, June.
    13. Baierl, Andreas & Futschik, Andreas & Bogdan, Malgorzata & Biecek, Przemyslaw, 2007. "Locating multiple interacting quantitative trait loci using robust model selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6423-6434, August.
    14. Jiming Jiang & Thuan Nguyen & J. Sunil Rao, 2015. "The E-MS Algorithm: Model Selection With Incomplete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1136-1147, September.
    15. Sun, Hanmei & Nguyen, Thuan & Luan, Yihui & Jiang, Jiming, 2018. "Classified mixed logistic model prediction," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 63-74.
    16. McClosky Benjamin & Ma Xiwen & Tanksley Steven D., 2011. "Quantifying the Relative Contribution of the Heterozygous Class to QTL Detection Power," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-19, May.
    17. Zehua Chen, 2005. "The Full EM Algorithm for the MLEs of QTL Effects and Positions and Their Estimated Variances in Multiple-Interval Mapping," Biometrics, The International Biometric Society, vol. 61(2), pages 474-480, June.
    18. Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
    19. Shriner, Daniel & Yi, Nengjun, 2009. "Deviance information criterion (DIC) in Bayesian multiple QTL mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1850-1860, March.
    20. Edward Boone & Susan Simmons & Haikun Bao & Ann Stapleton, 2008. "Bayesian hierarchical regression models for detecting QTLs in plant experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(7), pages 799-808.
    21. Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.