IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040530.html
   My bibliography  Save this article

Where Are All the Fish: Potential of Biogeographical Maps to Project Current and Future Distribution Patterns of Freshwater Species

Author

Listed:
  • Danijela Markovic
  • Jörg Freyhof
  • Christian Wolter

Abstract

The dendritic structure of river networks is commonly argued against use of species atlas data for modeling freshwater species distributions, but little has been done to test the potential of grid-based data in predictive species mapping. Using four different niche-based models and three different climate change projections for the middle of the 21st century merged pairwise as well as within a consensus modeling framework, we studied the variability in current and future distribution patterns of 38 freshwater fish species across Germany. We used grid-based (11×11 km) fish distribution maps and numerous climatic, topographic, hydromorphologic, and anthropogenic factors derived from environmental maps at a finer scale resolution (250 m–1 km). Apart from the explicit predictor selection, our modeling framework included uncertainty estimation for all phases of the modeling process. We found that the predictive performance of some niche-based models is excellent independent of the predictor data set used, emphasizing the importance of a well-grounded predictor selection process. Though important, climate was not a primary key factor for any of the studied fish species groups, in contrast to substrate preferences, hierarchical river structure, and topography. Generally, distribution ranges of cold-water and warm-water species are expected to change significantly in the future; however, the extent of changes is highly uncertain. Finally, we show that the mismatch between the current and future ranges of climatic variables of more than 90% is the most limiting factor regarding reliability of our future estimates. Our study highlighted the underestimated potential of grid cell information in biogeographical modeling of freshwater species and provides a comprehensive modeling framework for predictive mapping of species distributions and evaluation of the associated uncertainties.

Suggested Citation

  • Danijela Markovic & Jörg Freyhof & Christian Wolter, 2012. "Where Are All the Fish: Potential of Biogeographical Maps to Project Current and Future Distribution Patterns of Freshwater Species," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-15, July.
  • Handle: RePEc:plo:pone00:0040530
    DOI: 10.1371/journal.pone.0040530
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040530
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040530&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    2. Jean-François Guégan & Sovan Lek & Thierry Oberdorff, 1998. "Energy availability and habitat heterogeneity predict global riverine fish diversity," Nature, Nature, vol. 391(6665), pages 382-384, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markovic, Danijela & Walz, Ariane & Kärcher, Oskar, 2019. "Scale effects on the performance of niche-based models of freshwater fish distributions: Local vs. upstream area influences," Ecological Modelling, Elsevier, vol. 411(C).
    2. Johannes Radinger & Christian Wolter & Jochem Kail, 2015. "Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    3. Pletterbauer, Florian & Graf, Wolfram & Schmutz, Stefan, 2016. "Effect of biotic dependencies in species distribution models: The future distribution of Thymallus thymallus under consideration of Allogamus auricollis," Ecological Modelling, Elsevier, vol. 327(C), pages 95-104.
    4. Kevin P. Krause & Huicheng Chien & Darren L. Ficklin & Damon M. Hall & Guenter A. Schuster & Todd M. Swannack & Chris A. Taylor & Jason H. Knouft, 2019. "Streamflow regimes and geologic conditions are more important than water temperature when projecting future crayfish distributions," Climatic Change, Springer, vol. 154(1), pages 107-123, May.
    5. Cao, Yong & DeWalt, R. Edward & Robinson, Jason L. & Tweddale, Tari & Hinz, Leon & Pessino, Massimo, 2013. "Using Maxent to model the historic distributions of stonefly species in Illinois streams: The effects of regularization and threshold selections," Ecological Modelling, Elsevier, vol. 259(C), pages 30-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Guohuan Su & Adam Mertel & Sébastien Brosse & Justin M. Calabrese, 2023. "Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yuichiro Yoshida & Han Soo Lee & Bui Huy Trung & Hoang-Dung Tran & Mahrjan Keshlav Lall & Kifayatullah Kakar & Tran Dang Xuan, 2020. "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    4. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    5. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    7. Qiting Zuo & Yixuan Diao & Lingang Hao & Chunhui Han, 2020. "Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4019-4035, October.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    10. Christian Franco-Crespo & Jose Maria Sumpsi Viñas, 2017. "The Impact of Pricing Policies on Irrigation Water for Agro-Food Farms in Ecuador," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    11. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    12. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    13. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    14. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    15. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    16. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    17. Jonathan Lautze & Herath Manthrithilake, 2012. "Water security: Old concepts, new package, what value?," Natural Resources Forum, Blackwell Publishing, vol. 36(2), pages 76-87, May.
    18. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    19. Jorge García Molinos & Ian Donohue, 2014. "Downscaling the non-stationary effect of climate forcing on local-scale dynamics: the importance of environmental filters," Climatic Change, Springer, vol. 124(1), pages 333-346, May.
    20. M. G. Hutchins & M. J. Bowes, 2018. "Balancing Water Demand Needs with Protection of River Water Quality by Minimising Stream Residence Time: an Example from the Thames, UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2561-2568, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.