IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040274.html
   My bibliography  Save this article

Analysing the Role of UVB-Induced Translational Inhibition and PP2Ac Deactivation in NF-κB Signalling Using a Minimal Mathematical Model

Author

Listed:
  • Johannes Witt
  • Fabian Konrath
  • Oliver Sawodny
  • Michael Ederer
  • Dagmar Kulms
  • Thomas Sauter

Abstract

Activation of nuclear factor κB (NF-κB) by interleukin-1β (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-κB dependent resynthesis of its own inhibitor IκBα. However, apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with IL-1 in human epithelial cells. Under these conditions NF-κB remains constitutively active and turns into a pro-apoptotic factor by selectively repressing anti-apoptotic genes. Two different mechanisms have been separately proposed to explain UV-induced lack of IκBα recurrence: global translational inhibition as well as deactivation of the Ser/Thr phosphatase PP2Ac. Using mathematical modelling, we show that the systems behaviour requires a combination of both mechanisms, and we quantify their contribution in different settings. A mathematical model including both mechanisms is developed and fitted to various experimental data sets. A comparison of the model results and predictions with model variants lacking one of the mechanisms shows that both mechanisms are present in our experimental setting. The model is successfully validated by the prediction of independent data. Weak constitutive IKKβ phosphorylation is shown to be a decisive process in IκBα degradation induced by UVB stimulation alone, but irrelevant for (co-)stimulations with IL-1. In silico knockout experiments show that translational inhibition is predominantly responsible for lack of IκBα recurrence following IL-1+UVB stimulation. In case of UVB stimulation alone, cooperation of both processes causes the observed decrease of IκBα. This shows that the processes leading to activation of transcription factor NF-κB upon stimulation with ultraviolet B radiation with and without interleukin-1 costimulation are more complex than previously thought, involving both a cross talk of UVB induced translational inhibition and PP2Ac deactivation. The importance of each of the mechanisms depends on the specific cellular setting.

Suggested Citation

  • Johannes Witt & Fabian Konrath & Oliver Sawodny & Michael Ederer & Dagmar Kulms & Thomas Sauter, 2012. "Analysing the Role of UVB-Induced Translational Inhibition and PP2Ac Deactivation in NF-κB Signalling Using a Minimal Mathematical Model," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0040274
    DOI: 10.1371/journal.pone.0040274
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040274
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040274&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Savaş Tay & Jacob J. Hughey & Timothy K. Lee & Tomasz Lipniacki & Stephen R. Quake & Markus W. Covert, 2010. "Single-cell NF-κB dynamics reveal digital activation and analogue information processing," Nature, Nature, vol. 466(7303), pages 267-271, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Konrath & Johannes Witt & Thomas Sauter & Dagmar Kulms, 2014. "Identification of New IκBα Complexes by an Iterative Experimental and Mathematical Modeling Approach," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martiny, Emil S. & Jensen, Mogens H. & Heltberg, Mathias S., 2022. "Detecting limit cycles in stochastic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    3. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    4. Christopher C Govern & Arup K Chakraborty, 2013. "Stochastic Responses May Allow Genetically Diverse Cell Populations to Optimize Performance with Simpler Signaling Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    5. Agne Tilūnaitė & Wayne Croft & Noah Russell & Tomas C Bellamy & Rüdiger Thul, 2017. "A Bayesian approach to modelling heterogeneous calcium responses in cell populations," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
    6. Giorgos Minas & Dan J Woodcock & Louise Ashall & Claire V Harper & Michael R H White & David A Rand, 2020. "Multiplexing information flow through dynamic signalling systems," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.