IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0038011.html
   My bibliography  Save this article

TrakEM2 Software for Neural Circuit Reconstruction

Author

Listed:
  • Albert Cardona
  • Stephan Saalfeld
  • Johannes Schindelin
  • Ignacio Arganda-Carreras
  • Stephan Preibisch
  • Mark Longair
  • Pavel Tomancak
  • Volker Hartenstein
  • Rodney J Douglas

Abstract

A key challenge in neuroscience is the expeditious reconstruction of neuronal circuits. For model systems such as Drosophila and C. elegans, the limiting step is no longer the acquisition of imagery but the extraction of the circuit from images. For this purpose, we designed a software application, TrakEM2, that addresses the systematic reconstruction of neuronal circuits from large electron microscopical and optical image volumes. We address the challenges of image volume composition from individual, deformed images; of the reconstruction of neuronal arbors and annotation of synapses with fast manual and semi-automatic methods; and the management of large collections of both images and annotations. The output is a neural circuit of 3d arbors and synapses, encoded in NeuroML and other formats, ready for analysis.

Suggested Citation

  • Albert Cardona & Stephan Saalfeld & Johannes Schindelin & Ignacio Arganda-Carreras & Stephan Preibisch & Mark Longair & Pavel Tomancak & Volker Hartenstein & Rodney J Douglas, 2012. "TrakEM2 Software for Neural Circuit Reconstruction," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-8, June.
  • Handle: RePEc:plo:pone00:0038011
    DOI: 10.1371/journal.pone.0038011
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038011
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0038011&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0038011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davi D. Bock & Wei-Chung Allen Lee & Aaron M. Kerlin & Mark L. Andermann & Greg Hood & Arthur W. Wetzel & Sergey Yurgenson & Edward R. Soucy & Hyon Suk Kim & R. Clay Reid, 2011. "Network anatomy and in vivo physiology of visual cortical neurons," Nature, Nature, vol. 471(7337), pages 177-182, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenlong Zhang & Nicholas C Anzalone & Rodrigo P Faria & Joshua M Pearce, 2013. "Open-Source 3D-Printable Optics Equipment," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Zhihao Zheng & Christopher S. Own & Adrian A. Wanner & Randal A. Koene & Eric W. Hammerschmith & William M. Silversmith & Nico Kemnitz & Ran Lu & David W. Tank & H. Sebastian Seung, 2024. "Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Shang, Ke-ke & Small, Michael & Yan, Wei-sheng, 2017. "Link direction for link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 767-776.
    4. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    5. Vladimir V Klinshov & Jun-nosuke Teramae & Vladimir I Nekorkin & Tomoki Fukai, 2014. "Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-12, April.
    6. Anton Kocheturov & Panos M. Pardalos & Athanasia Karakitsiou, 2019. "Massive datasets and machine learning for computational biomedicine: trends and challenges," Annals of Operations Research, Springer, vol. 276(1), pages 5-34, May.
    7. Sergiy Popovych & Thomas Macrina & Nico Kemnitz & Manuel Castro & Barak Nehoran & Zhen Jia & J. Alexander Bae & Eric Mitchell & Shang Mu & Eric T. Trautman & Stephan Saalfeld & Kai Li & H. Sebastian S, 2024. "Petascale pipeline for precise alignment of images from serial section electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Anna Kreshuk & Ullrich Koethe & Elizabeth Pax & Davi D Bock & Fred A Hamprecht, 2014. "Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    9. Umberto Esposito & Michele Giugliano & Mark van Rossum & Eleni Vasilaki, 2014. "Measuring Symmetry, Asymmetry and Randomness in Neural Network Connectivity," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    10. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    11. Tianshuo Qiu & Qiang An & Jianqi Wang & Jiafu Wang & Cheng-Wei Qiu & Shiyong Li & Hao Lv & Ming Cai & Jianyi Wang & Lin Cong & Shaobo Qu, 2024. "Vision-driven metasurfaces for perception enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0038011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.