IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0037840.html
   My bibliography  Save this article

DISCO-SCA and Properly Applied GSVD as Swinging Methods to Find Common and Distinctive Processes

Author

Listed:
  • Katrijn Van Deun
  • Iven Van Mechelen
  • Lieven Thorrez
  • Martijn Schouteden
  • Bart De Moor
  • Mariët J van der Werf
  • Lieven De Lathauwer
  • Age K Smilde
  • Henk A L Kiers

Abstract

Background: In systems biology it is common to obtain for the same set of biological entities information from multiple sources. Examples include expression data for the same set of orthologous genes screened in different organisms and data on the same set of culture samples obtained with different high-throughput techniques. A major challenge is to find the important biological processes underlying the data and to disentangle therein processes common to all data sources and processes distinctive for a specific source. Recently, two promising simultaneous data integration methods have been proposed to attain this goal, namely generalized singular value decomposition (GSVD) and simultaneous component analysis with rotation to common and distinctive components (DISCO-SCA). Results: Both theoretical analyses and applications to biologically relevant data show that: (1) straightforward applications of GSVD yield unsatisfactory results, (2) DISCO-SCA performs well, (3) provided proper pre-processing and algorithmic adaptations, GSVD reaches a performance level similar to that of DISCO-SCA, and (4) DISCO-SCA is directly generalizable to more than two data sources. The biological relevance of DISCO-SCA is illustrated with two applications. First, in a setting of comparative genomics, it is shown that DISCO-SCA recovers a common theme of cell cycle progression and a yeast-specific response to pheromones. The biological annotation was obtained by applying Gene Set Enrichment Analysis in an appropriate way. Second, in an application of DISCO-SCA to metabolomics data for Escherichia coli obtained with two different chemical analysis platforms, it is illustrated that the metabolites involved in some of the biological processes underlying the data are detected by one of the two platforms only; therefore, platforms for microbial metabolomics should be tailored to the biological question. Conclusions: Both DISCO-SCA and properly applied GSVD are promising integrative methods for finding common and distinctive processes in multisource data. Open source code for both methods is provided.

Suggested Citation

  • Katrijn Van Deun & Iven Van Mechelen & Lieven Thorrez & Martijn Schouteden & Bart De Moor & Mariët J van der Werf & Lieven De Lathauwer & Age K Smilde & Henk A L Kiers, 2012. "DISCO-SCA and Properly Applied GSVD as Swinging Methods to Find Common and Distinctive Processes," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-13, May.
  • Handle: RePEc:plo:pone00:0037840
    DOI: 10.1371/journal.pone.0037840
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037840
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037840&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0037840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karthik Devarajan, 2008. "Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    2. Arno Onken & Jian K Liu & P P Chamanthi R Karunasekara & Ioannis Delis & Tim Gollisch & Stefano Panzeri, 2016. "Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-46, November.
    3. GILLIS, Nicolas & GLINEUR, François, 2011. "Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization," LIDAM Discussion Papers CORE 2011030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Gregory Lepeu & Ellen Maren & Kristina Slabeva & Cecilia Friedrichs-Maeder & Markus Fuchs & Werner J. Z’Graggen & Claudio Pollo & Kaspar A. Schindler & Antoine Adamantidis & Timothée Proix & Maxime O., 2024. "The critical dynamics of hippocampal seizures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Flavia Esposito, 2021. "A Review on Initialization Methods for Nonnegative Matrix Factorization: Towards Omics Data Experiments," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
    6. Haixuan Yang & Cathal Seoighe, 2016. "Impact of the Choice of Normalization Method on Molecular Cancer Class Discovery Using Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.
    7. GILLIS, Nicolas & GLINEUR, François, 2008. "Nonnegative factorization and the maximum edge biclique problem," LIDAM Discussion Papers CORE 2008064, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    9. Minghao Li & Zicheng Zhang & Qianrong Wang & Yan Yi & Baosheng Li, 2022. "Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. José M. Maisog & Andrew T. DeMarco & Karthik Devarajan & Stanley Young & Paul Fogel & George Luta, 2021. "Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    11. Arun Varghese & Michelle Cawley & Tao Hong, 2018. "Supervised clustering for automated document classification and prioritization: a case study using toxicological abstracts," Environment Systems and Decisions, Springer, vol. 38(3), pages 398-414, September.
    12. Hui-Min Wang & Ching-Lin Hsiao & Ai-Ru Hsieh & Ying-Chao Lin & Cathy S J Fann, 2012. "Constructing Endophenotypes of Complex Diseases Using Non-Negative Matrix Factorization and Adjusted Rand Index," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    13. Richard Nock & Natalia Polouliakh & Frank Nielsen & Keigo Oka & Carlin R Connell & Cedric Heimhofer & Kazuhiro Shibanai & Samik Ghosh & Ken-ichi Aisaki & Satoshi Kitajima & Jun Kanno & Taketo Akama & , 2020. "A Geometric Clustering Tool (AGCT) to robustly unravel the inner cluster structures of time-series gene expressions," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-19, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0037840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.