Author
Listed:
- Raphaël Clément
- Pierre Blanc
- Benjamin Mauroy
- Vincent Sapin
- Stéphane Douady
Abstract
The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung’s striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree’s fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung’s complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways.
Suggested Citation
Raphaël Clément & Pierre Blanc & Benjamin Mauroy & Vincent Sapin & Stéphane Douady, 2012.
"Shape Self-Regulation in Early Lung Morphogenesis,"
PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
Handle:
RePEc:plo:pone00:0036925
DOI: 10.1371/journal.pone.0036925
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0036925. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.