IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0036925.html
   My bibliography  Save this article

Shape Self-Regulation in Early Lung Morphogenesis

Author

Listed:
  • Raphaël Clément
  • Pierre Blanc
  • Benjamin Mauroy
  • Vincent Sapin
  • Stéphane Douady

Abstract

The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung’s striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree’s fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung’s complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways.

Suggested Citation

  • Raphaël Clément & Pierre Blanc & Benjamin Mauroy & Vincent Sapin & Stéphane Douady, 2012. "Shape Self-Regulation in Early Lung Morphogenesis," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0036925
    DOI: 10.1371/journal.pone.0036925
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036925
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0036925&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0036925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ross J. Metzger & Ophir D. Klein & Gail R. Martin & Mark A. Krasnow, 2008. "The branching programme of mouse lung development," Nature, Nature, vol. 453(7196), pages 745-750, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Can Uçar & Dmitrii Kamenev & Kazunori Sunadome & Dominik Fachet & Francois Lallemend & Igor Adameyko & Saida Hadjab & Edouard Hannezo, 2021. "Theory of branching morphogenesis by local interactions and global guidance," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Mingzhu Sun & Hui Xu & Xingjuan Zeng & Xin Zhao, 2017. "Automated numerical simulation of biological pattern formation based on visual feedback simulation framework," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    3. Cemal Cagatay Bilgin & Shayoni Ray & Banu Baydil & William P Daley & Melinda Larsen & Bülent Yener, 2012. "Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-19, March.
    4. Yihwa Kim & Robert Sinclair & Nol Chindapol & Jaap A Kaandorp & Erik De Schutter, 2012. "Geometric Theory Predicts Bifurcations in Minimal Wiring Cost Trees in Biology Are Flat," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-7, April.
    5. Anna Urciuolo & Giovanni Giuseppe Giobbe & Yixiao Dong & Federica Michielin & Luca Brandolino & Michael Magnussen & Onelia Gagliano & Giulia Selmin & Valentina Scattolini & Paolo Raffa & Paola Caccin , 2023. "Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Mehmet Can Uçar & Edouard Hannezo & Emmi Tiilikainen & Inam Liaqat & Emma Jakobsson & Harri Nurmi & Kari Vaahtomeri, 2023. "Self-organized and directed branching results in optimal coverage in developing dermal lymphatic networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Kuan Zhang & Erica Yao & Ethan Chuang & Biao Chen & Evelyn Y. Chuang & Pao-Tien Chuang, 2022. "mTORC1 signaling facilitates differential stem cell differentiation to shape the developing murine lung and is associated with mitochondrial capacity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Yina Guo & Mingzhu Sun & Alan Garfinkel & Xin Zhao, 2014. "Mechanisms of Side Branching and Tip Splitting in a Model of Branching Morphogenesis," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-14, July.
    9. Elif Tekin & David Hunt & Mitchell G Newberry & Van M Savage, 2016. "Do Vascular Networks Branch Optimally or Randomly across Spatial Scales?," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-28, November.
    10. Douglas G. Brownfield & Alex Diaz Arce & Elisa Ghelfi & Astrid Gillich & Tushar J. Desai & Mark A. Krasnow, 2022. "Alveolar cell fate selection and lifelong maintenance of AT2 cells by FGF signaling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0036925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.