IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0030818.html
   My bibliography  Save this article

Characterization of Spontaneous Bone Marrow Recovery after Sublethal Total Body Irradiation: Importance of the Osteoblastic/Adipocytic Balance

Author

Listed:
  • Géraldine Poncin
  • Aurore Beaulieu
  • Chantal Humblet
  • Albert Thiry
  • Kimimitsu Oda
  • Jacques Boniver
  • Marie-Paule Defresne

Abstract

Many studies have already examined the hematopoietic recovery after irradiation but paid with very little attention to the bone marrow microenvironment. Nonetheless previous studies in a murine model of reversible radio-induced bone marrow aplasia have shown a significant increase in alkaline phosphatase activity (ALP) prior to hematopoietic regeneration. This increase in ALP activity was not due to cell proliferation but could be attributed to modifications of the properties of mesenchymal stem cells (MSC). We thus undertook a study to assess the kinetics of the evolution of MSC correlated to their hematopoietic supportive capacities in mice treated with sub lethal total body irradiation. In our study, colony-forming units – fibroblasts (CFU-Fs) assay showed a significant MSC rate increase in irradiated bone marrows. CFU-Fs colonies still possessed differentiation capacities of MSC but colonies from mice sacrificed 3 days after irradiation displayed high rates of ALP activity and a transient increase in osteoblastic markers expression while pparγ and neuropilin-1 decreased. Hematopoietic supportive capacities of CFU-Fs were also modified: as compared to controls, irradiated CFU-Fs significantly increased the proliferation rate of hematopoietic precursors and accelerated the differentiation toward the granulocytic lineage. Our data provide the first evidence of the key role exerted by the balance between osteoblasts and adipocytes in spontaneous bone marrow regeneration. First, (pre)osteoblast differentiation from MSC stimulated hematopoietic precursor's proliferation and granulopoietic regeneration. Then, in a second time (pre)osteoblasts progressively disappeared in favour of adipocytic cells which down regulated the proliferation and granulocytic differentiation and then contributed to a return to pre-irradiation conditions.

Suggested Citation

  • Géraldine Poncin & Aurore Beaulieu & Chantal Humblet & Albert Thiry & Kimimitsu Oda & Jacques Boniver & Marie-Paule Defresne, 2012. "Characterization of Spontaneous Bone Marrow Recovery after Sublethal Total Body Irradiation: Importance of the Osteoblastic/Adipocytic Balance," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-13, February.
  • Handle: RePEc:plo:pone00:0030818
    DOI: 10.1371/journal.pone.0030818
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030818
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0030818&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0030818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. M. Calvi & G. B. Adams & K. W. Weibrecht & J. M. Weber & D. P. Olson & M. C. Knight & R. P. Martin & E. Schipani & P. Divieti & F. R. Bringhurst & L. A. Milner & H. M. Kronenberg & D. T. Scadden, 2003. "Osteoblastic cells regulate the haematopoietic stem cell niche," Nature, Nature, vol. 425(6960), pages 841-846, October.
    2. Yuehua Jiang & Balkrishna N. Jahagirdar & R. Lee Reinhardt & Robert E. Schwartz & C. Dirk Keene & Xilma R. Ortiz-Gonzalez & Morayma Reyes & Todd Lenvik & Troy Lund & Mark Blackstad & Jingbo Du & Sara , 2002. "RETRACTED ARTICLE: Pluripotency of mesenchymal stem cells derived from adult marrow," Nature, Nature, vol. 418(6893), pages 41-49, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrienne Anginot & Julie Nguyen & Zeina Abou Nader & Vincent Rondeau & Amélie Bonaud & Maria Kalogeraki & Antoine Boutin & Julia P. Lemos & Valeria Bisio & Joyce Koenen & Lea Hanna Doumit Sakr & Amand, 2023. "WHIM Syndrome-linked CXCR4 mutations drive osteoporosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Ling-Li Li & Guohua Ding & Nan Feng & Ming-Huang Wang & Yuh-Shan Ho, 2009. "Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 39-58, July.
    3. Xue Zhong & Nagesh Peddada & Jianhui Wang & James J. Moresco & Xiaowei Zhan & John M. Shelton & Jeffrey A. SoRelle & Katie Keller & Danielle Renee Lazaro & Eva Marie Y. Moresco & Jin Huk Choi & Bruce , 2023. "OVOL2 sustains postnatal thymic epithelial cell identity," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0030818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.