IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0029848.html
   My bibliography  Save this article

Genetic Signatures of Exceptional Longevity in Humans

Author

Listed:
  • Paola Sebastiani
  • Nadia Solovieff
  • Andrew T DeWan
  • Kyle M Walsh
  • Annibale Puca
  • Stephen W Hartley
  • Efthymia Melista
  • Stacy Andersen
  • Daniel A Dworkis
  • Jemma B Wilk
  • Richard H Myers
  • Martin H Steinberg
  • Monty Montano
  • Clinton T Baldwin
  • Josephine Hoh
  • Thomas T Perls

Abstract

Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.

Suggested Citation

  • Paola Sebastiani & Nadia Solovieff & Andrew T DeWan & Kyle M Walsh & Annibale Puca & Stephen W Hartley & Efthymia Melista & Stacy Andersen & Daniel A Dworkis & Jemma B Wilk & Richard H Myers & Martin , 2012. "Genetic Signatures of Exceptional Longevity in Humans," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-22, January.
  • Handle: RePEc:plo:pone00:0029848
    DOI: 10.1371/journal.pone.0029848
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029848
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0029848&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0029848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhi Wei & Kai Wang & Hui-Qi Qu & Haitao Zhang & Jonathan Bradfield & Cecilia Kim & Edward Frackleton & Cuiping Hou & Joseph T Glessner & Rosetta Chiavacci & Charles Stanley & Dimitri Monos & Struan F , 2009. "From Disease Association to Risk Assessment: An Optimistic View from Genome-Wide Association Studies on Type 1 Diabetes," PLOS Genetics, Public Library of Science, vol. 5(10), pages 1-11, October.
    2. Sebastian Okser & Terho Lehtimäki & Laura L Elo & Nina Mononen & Nina Peltonen & Mika Kähönen & Markus Juonala & Yue-Mei Fan & Jussi A Hernesniemi & Tomi Laitinen & Leo-Pekka Lyytikäinen & Riikka Ront, 2010. "Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study," PLOS Genetics, Public Library of Science, vol. 6(9), pages 1-13, September.
    3. B. Devlin & Kathryn Roeder, 1999. "Genomic Control for Association Studies," Biometrics, The International Biometric Society, vol. 55(4), pages 997-1004, December.
    4. Jan Vijg & Judith Campisi, 2008. "Puzzles, promises and a cure for ageing," Nature, Nature, vol. 454(7208), pages 1065-1071, August.
    5. Maria Eriksson & W. Ted Brown & Leslie B. Gordon & Michael W. Glynn & Joel Singer & Laura Scott & Michael R. Erdos & Christiane M. Robbins & Tracy Y. Moses & Peter Berglund & Amalia Dutra & Evgenia Pa, 2003. "Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome," Nature, Nature, vol. 423(6937), pages 293-298, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastian Greshake & Philipp E Bayer & Helge Rausch & Julia Reda, 2014. "openSNP–A Crowdsourced Web Resource for Personal Genomics," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Yu-Fang Pei & Jian Li & Christopher J Papasian & Hong-Wen Deng, 2009. "Univariate/Multivariate Genome-Wide Association Scans Using Data from Families and Unrelated Samples," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-12, August.
    2. Dominic Holland & Oleksandr Frei & Rahul Desikan & Chun-Chieh Fan & Alexey A Shadrin & Olav B Smeland & V S Sundar & Paul Thompson & Ole A Andreassen & Anders M Dale, 2020. "Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-30, May.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Parsa Akbari & Dragana Vuckovic & Luca Stefanucci & Tao Jiang & Kousik Kundu & Roman Kreuzhuber & Erik L. Bao & Janine H. Collins & Kate Downes & Luigi Grassi & Jose A. Guerrero & Stephen Kaptoge & Ju, 2023. "A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Gang Zheng & Zhaohai Li & Mitchell H. Gail & Joseph L. Gastwirth, 2010. "Impact of Population Substructure on Trend Tests for Genetic Case–Control Association Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 196-204, March.
    7. Sandosh Padmanabhan & Olle Melander & Toby Johnson & Anna Maria Di Blasio & Wai K Lee & Davide Gentilini & Claire E Hastie & Cristina Menni & Maria Cristina Monti & Christian Delles & Stewart Laing & , 2010. "Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-11, October.
    8. Ohad Manor & Eran Segal, 2013. "Predicting Disease Risk Using Bootstrap Ranking and Classification Algorithms," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-10, August.
    9. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Jakris Eu-ahsunthornwattana & E Nancy Miller & Michaela Fakiola & Wellcome Trust Case Control Consortium 2 & Selma M B Jeronimo & Jenefer M Blackwell & Heather J Cordell, 2014. "Comparison of Methods to Account for Relatedness in Genome-Wide Association Studies with Family-Based Data," PLOS Genetics, Public Library of Science, vol. 10(7), pages 1-20, July.
    11. Jianzhong Ma & Christopher I Amos, 2010. "Theoretical Formulation of Principal Components Analysis to Detect and Correct for Population Stratification," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-14, September.
    12. Claire L Simpson & Robert Wojciechowski & Konrad Oexle & Federico Murgia & Laura Portas & Xiaohui Li & Virginie J M Verhoeven & Veronique Vitart & Maria Schache & S Mohsen Hosseini & Pirro G Hysi & Le, 2014. "Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-19, September.
    13. Cyril S Rakovski & Daniel O Stram, 2009. "A Kinship-Based Modification of the Armitage Trend Test to Address Hidden Population Structure and Small Differential Genotyping Errors," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-10, June.
    14. Denise Anderson & Heather J Cordell & Michaela Fakiola & Richard W Francis & Genevieve Syn & Elizabeth S H Scaman & Elizabeth Davis & Simon J Miles & Toby McLeay & Sarra E Jamieson & Jenefer M Blackwe, 2015. "First Genome-Wide Association Study in an Australian Aboriginal Population Provides Insights into Genetic Risk Factors for Body Mass Index and Type 2 Diabetes," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-25, March.
    15. Matthieu Bouaziz & Christophe Ambroise & Mickael Guedj, 2011. "Accounting for Population Stratification in Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-13, December.
    16. Aditi Shendre & Howard W Wiener & Marguerite R Irvin & Bradley E Aouizerat & Edgar T Overton & Jason Lazar & Chenglong Liu & Howard N Hodis & Nita A Limdi & Kathleen M Weber & Stephen J Gange & Degui , 2017. "Genome-wide admixture and association study of subclinical atherosclerosis in the Women’s Interagency HIV Study (WIHS)," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-23, December.
    17. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    18. Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
    19. Wang, Linglu & Li, Qizhai & Li, Zhaohai & Zheng, Gang, 2011. "Bayes factors in the presence of population stratification," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 836-841, July.
    20. Boitard Simon & Mangin Brigitte & Azaïs Jean-Marc, 2010. "Asymptotic Distribution of the "Orthogonal" Quantitative Transmission Disequilibrium Test in a Structured Population: Exact Formula," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0029848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.