IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0027043.html
   My bibliography  Save this article

Individual Differences and Metacognitive Knowledge of Visual Search Strategy

Author

Listed:
  • Michael J Proulx

Abstract

A crucial ability for an organism is to orient toward important objects and to ignore temporarily irrelevant objects. Attention provides the perceptual selectivity necessary to filter an overwhelming input of sensory information to allow for efficient object detection. Although much research has examined visual search and the ‘template’ of attentional set that allows for target detection, the behavior of individual subjects often reveals the limits of experimental control of attention. Few studies have examined important aspects such as individual differences and metacognitive strategies. The present study analyzes the data from two visual search experiments for a conjunctively defined target (Proulx, 2007). The data revealed attentional capture blindness, individual differences in search strategies, and a significant rate of metacognitive errors for the assessment of the strategies employed. These results highlight a challenge for visual attention studies to account for individual differences in search behavior and distractibility, and participants that do not (or are unable to) follow instructions.

Suggested Citation

  • Michael J Proulx, 2011. "Individual Differences and Metacognitive Knowledge of Visual Search Strategy," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
  • Handle: RePEc:plo:pone00:0027043
    DOI: 10.1371/journal.pone.0027043
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027043
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027043&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0027043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edward K. Vogel & Andrew W. McCollough & Maro G. Machizawa, 2005. "Neural measures reveal individual differences in controlling access to working memory," Nature, Nature, vol. 438(7067), pages 500-503, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aki Kondo & Jun Saiki, 2012. "Feature-Specific Encoding Flexibility in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    2. Jifan Zhou & Jun Yin & Tong Chen & Xiaowei Ding & Zaifeng Gao & Mowei Shen, 2011. "Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    3. Johan Liljefors & Rita Almeida & Gustaf Rane & Johan N. Lundström & Pawel Herman & Mikael Lundqvist, 2024. "Distinct functions for beta and alpha bursts in gating of human working memory," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Burgoyne, Alexander P. & Mashburn, Cody A. & Tsukahara, Jason S. & Engle, Randall W., 2022. "Attention control and process overlap theory: Searching for cognitive processes underpinning the positive manifold," Intelligence, Elsevier, vol. 91(C).
    5. Krieger, Florian & Zimmer, Hubert D. & Greiff, Samuel & Spinath, Frank M. & Becker, Nicolas, 2019. "Why are difficult figural matrices hard to solve? The role of selective encoding and working memory capacity," Intelligence, Elsevier, vol. 72(C), pages 35-48.
    6. Jonathan T Mall & Candice C Morey, 2013. "High Working Memory Capacity Predicts Less Retrieval Induced Forgetting," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
    7. Mohammad Zia Ul Haq Katshu & Giovanni d'Avossa, 2014. "Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0027043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.