IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0026705.html
   My bibliography  Save this article

Tracking Traders' Understanding of the Market Using e-Communication Data

Author

Listed:
  • Serguei Saavedra
  • Jordi Duch
  • Brian Uzzi

Abstract

Tracking the volume of keywords in Internet searches, message boards, or Tweets has provided an alternative for following or predicting associations between popular interest or disease incidences. Here, we extend that research by examining the role of e-communications among day traders and their collective understanding of the market. Our study introduces a general method that focuses on bundles of words that behave differently from daily communication routines, and uses original data covering the content of instant messages among all day traders at a trading firm over a 40-month period. Analyses show that two word bundles convey traders' understanding of same day market events and potential next day market events. We find that when market volatility is high, traders' communications are dominated by same day events, and when volatility is low, communications are dominated by next day events. We show that the stronger the traders' attention to either same day or next day events, the higher their collective trading performance. We conclude that e-communication among traders is a product of mass collaboration over diverse viewpoints that embodies unique information about their weak or strong understanding of the market.

Suggested Citation

  • Serguei Saavedra & Jordi Duch & Brian Uzzi, 2011. "Tracking Traders' Understanding of the Market Using e-Communication Data," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
  • Handle: RePEc:plo:pone00:0026705
    DOI: 10.1371/journal.pone.0026705
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026705
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0026705&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0026705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eduardo G Altmann & Janet B Pierrehumbert & Adilson E Motter, 2009. "Beyond Word Frequency: Bursts, Lulls, and Scaling in the Temporal Distributions of Words," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-7, November.
    2. Serguei Saavedra & David Smith & Felix Reed-Tsochas, 2010. "Cooperation under Indirect Reciprocity and Imitative Trust," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-6, October.
    3. Robert M. May & Simon A. Levin & George Sugihara, 2008. "Ecology for bankers," Nature, Nature, vol. 451(7181), pages 893-894, February.
    4. Diermeier, Daniel & Merlo, Antonio, 2000. "Government Turnover in Parliamentary Democracies," Journal of Economic Theory, Elsevier, vol. 94(1), pages 46-79, September.
    5. Duncan J. Watts, 2007. "A twenty-first century science," Nature, Nature, vol. 445(7127), pages 489-489, February.
    6. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    7. Roger Guimerà & Luís A. Nunes Amaral, 2005. "Functional cartography of complex metabolic networks," Nature, Nature, vol. 433(7028), pages 895-900, February.
    8. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word‐of‐Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    9. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    10. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    11. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    12. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    13. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Acerbi & Vasileios Lampos & Philip Garnett & R Alexander Bentley, 2013. "The Expression of Emotions in 20th Century Books," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-6, March.
    2. Niccolò Casnici & Pierpaolo Dondio & Roberto Casarin & Flaminio Squazzoni, 2015. "Decrypting Financial Markets through E-Joint Attention Efforts: On-Line Adaptive Networks of Investors in Periods of Market Uncertainty," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    3. Herm, Steffen & Callsen-Bracker, Hans-Markus & Kreis, Henning, 2014. "When the crowd evaluates soccer players’ market values: Accuracy and evaluation attributes of an online community," Sport Management Review, Elsevier, vol. 17(4), pages 484-492.
    4. David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
    5. Márton Mestyán & Taha Yasseri & János Kertész, 2013. "Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    6. Serguei Saavedra & Luis J. Gilarranz & Rudolf P. Rohr & Michael Schnabel & Brian Uzzi & Jordi Bascompte, 2014. "Stock fluctuations are correlated and amplified across networks of interlocking directorates," Papers 1410.6646, arXiv.org.
    7. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    2. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    3. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    4. Corsi, Fulvio & Lillo, Fabrizio & Pirino, Davide & Trapin, Luca, 2018. "Measuring the propagation of financial distress with Granger-causality tail risk networks," Journal of Financial Stability, Elsevier, vol. 38(C), pages 18-36.
    5. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
    6. Pedersen, Lasse Heje, 2022. "Game on: Social networks and markets," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1097-1119.
    7. Marcus Alexander Ong, 2015. "An information theoretic analysis of stock returns, volatility and trading volumes," Applied Economics, Taylor & Francis Journals, vol. 47(36), pages 3891-3906, August.
    8. Chaido Dritsaki, 2014. "The Dynamic Relationship between Stock Volatility and Trading Volume from the Athens Stock Exchange," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 3(3), pages 152-165.
    9. Pantzalis, Christos & Park, Jung Chul, 2014. "Too close for comfort? Geographic propinquity to political power and stock returns," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 57-78.
    10. Bichler, Shimshon & Nitzan, Jonathan, 2010. "Systemic Fear, Modern Finance and the Future of Capitalism," EconStor Preprints 157830, ZBW - Leibniz Information Centre for Economics.
    11. Michael Bailey & Ruiqing Cao & Theresa Kuchler & Johannes Stroebel, 2016. "Social Networks and Housing Markets," NBER Working Papers 22258, National Bureau of Economic Research, Inc.
    12. Jawadi, Fredj & Jawadi, Nabila & Idi Cheffou, Abdoukarim, 2019. "A statistical analysis of uncertainty for conventional and ethical stock indexes," The Quarterly Review of Economics and Finance, Elsevier, vol. 74(C), pages 9-17.
    13. Tariq Aziz & Valeed Ahmad Ansari, 2021. "How Does Google Search Affect the Stock Market? Evidence from Indian Companies," Vision, , vol. 25(2), pages 224-232, June.
    14. Ling-Yun He & Sheng Yang & Wen-Si Xie & Zhi-Hong Han, 2014. "Contemporaneous and Asymmetric Properties in the Price-Volume Relationships in China's Agricultural Futures Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(S1), pages 148-166.
    15. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
    16. Kristoufek, Ladislav, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
    17. Kiran Thapa, 2013. "Stock Message Board Recommendations and Share Trading Activity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 10, July-Dece.
    18. Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
    19. Ramzi Boussaidi, 2022. "Implications of the overconfidence bias in presence of private information: Evidence from MENA stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3660-3678, July.
    20. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0026705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.