IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0021128.html
   My bibliography  Save this article

Travelling Waves of a Delayed SIR Epidemic Model with Nonlinear Incidence Rate and Spatial Diffusion

Author

Listed:
  • Jing Yang
  • Siyang Liang
  • Yi Zhang

Abstract

This paper is concerned with the existence of travlelling waves to a SIR epidemic model with nonlinear incidence rate, spatial diffusion and time delay. By analyzing the corresponding characteristic equations, the local stability of a disease-free steady state and an endemic steady state to this system under homogeneous Neumann boundary conditions is discussed. By using the cross iteration method and the Schauder's fixed point theorem, we reduce the existence of travelling waves to the existence of a pair of upper-lower solutions. By constructing a pair of upper-lower solutions, we derive the existence of a travelling wave connecting the disease-free steady state and the endemic steady state. Numerical simulations are carried out to illustrate the main results.

Suggested Citation

  • Jing Yang & Siyang Liang & Yi Zhang, 2011. "Travelling Waves of a Delayed SIR Epidemic Model with Nonlinear Incidence Rate and Spatial Diffusion," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
  • Handle: RePEc:plo:pone00:0021128
    DOI: 10.1371/journal.pone.0021128
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021128
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0021128&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0021128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fuentes, M.A. & Kuperman, M.N., 1999. "Cellular automata and epidemiological models with spatial dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 471-486.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Xiang Chen & Fang-Qian Xu, 2014. "Higher Dimensional Gaussian-Type Solitons of Nonlinear Schrödinger Equation with Cubic and Power-Law Nonlinearities in PT-Symmetric Potentials," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    2. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Schimit, P.H.T. & Monteiro, L.H.A., 2012. "On estimating the basic reproduction number in distinct stages of a contagious disease spreading," Ecological Modelling, Elsevier, vol. 240(C), pages 156-160.
    4. Fatima-Zohra Younsi & Ahmed Bounnekar & Djamila Hamdadou & Omar Boussaid, 2019. "Integration of Multiple Regression Model in an Epidemiological Decision Support System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1755-1783, November.
    5. Monteiro, L.H.A. & Sasso, J.B. & Chaui Berlinck, J.G., 2007. "Continuous and discrete approaches to the epidemiology of viral spreading in populations taking into account the delay of incubation time," Ecological Modelling, Elsevier, vol. 201(3), pages 553-557.
    6. Mark C. Andersen & Heather Adams & Bruce Hope & Mark Powell, 2004. "Risk Analysis for Invasive Species: General Framework and Research Needs," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 893-900, August.
    7. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    8. Huiyu Xuan & Lida Xu & Lu Li, 2009. "A CA-based epidemic model for HIV/AIDS transmission with heterogeneity," Annals of Operations Research, Springer, vol. 168(1), pages 81-99, April.
    9. Ilnytskyi, Jaroslav & Kozitsky, Yuri & Ilnytskyi, Hryhoriy & Haiduchok, Olena, 2016. "Stationary states and spatial patterning in an SIS epidemiology model with implicit mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 36-45.
    10. Bruno Bonté & Jean-Denis Mathias & Raphaël Duboz, 2012. "Moment Approximation of Infection Dynamics in a Population of Moving Hosts," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    11. Schimit, P.H.T. & Monteiro, L.H.A., 2010. "Who should wear mask against airborne infections? Altering the contact network for controlling the spread of contagious diseases," Ecological Modelling, Elsevier, vol. 221(9), pages 1329-1332.
    12. Schimit, P.H.T. & Monteiro, L.H.A., 2009. "On the basic reproduction number and the topological properties of the contact network: An epidemiological study in mainly locally connected cellular automata," Ecological Modelling, Elsevier, vol. 220(7), pages 1034-1042.
    13. Denys Yemshanov & Frank H. Koch & Daniel W. McKenney & Marla C. Downing & Frank Sapio, 2009. "Mapping Invasive Species Risks with Stochastic Models: A Cross‐Border United States‐Canada Application for Sirex noctilio Fabricius," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 868-884, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0021128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.