IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0018874.html
   My bibliography  Save this article

Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing

Author

Listed:
  • Shu-Dong Zhang

Abstract

Background: Biomedical researchers are now often faced with situations where it is necessary to test a large number of hypotheses simultaneously, eg, in comparative gene expression studies using high-throughput microarray technology. To properly control false positive errors the FDR (false discovery rate) approach has become widely used in multiple testing. The accurate estimation of FDR requires the proportion of true null hypotheses being accurately estimated. To date many methods for estimating this quantity have been proposed. Typically when a new method is introduced, some simulations are carried out to show the improved accuracy of the new method. However, the simulations are often very limited to covering only a few points in the parameter space. Results: Here I have carried out extensive in silico experiments to compare some commonly used methods for estimating the proportion of true null hypotheses. The coverage of these simulations is unprecedented thorough over the parameter space compared to typical simulation studies in the literature. Thus this work enables us to draw conclusions globally as to the performance of these different methods. It was found that a very simple method gives the most accurate estimation in a dominantly large area of the parameter space. Given its simplicity and its overall superior accuracy I recommend its use as the first choice for estimating the proportion of true null hypotheses in multiple testing.

Suggested Citation

  • Shu-Dong Zhang, 2011. "Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-10, April.
  • Handle: RePEc:plo:pone00:0018874
    DOI: 10.1371/journal.pone.0018874
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018874
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0018874&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0018874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen-An Tsai & Huey-miin Hsueh & James J. Chen, 2003. "Estimation of False Discovery Rates in Multiple Testing: Application to Gene Microarray Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1071-1081, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    2. Robert R. Delongchamp & John F. Bowyer & James J. Chen & Ralph L. Kodell, 2004. "Multiple-Testing Strategy for Analyzing cDNA Array Data on Gene Expression," Biometrics, The International Biometric Society, vol. 60(3), pages 774-782, September.
    3. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    4. Yongqiang Tang & Subhashis Ghosal & Anindya Roy, 2007. "Nonparametric Bayesian Estimation of Positive False Discovery Rates," Biometrics, The International Biometric Society, vol. 63(4), pages 1126-1134, December.
    5. Kenneth Rice & David Spiegelhalter, 2006. "A Simple Diagnostic Plot Connecting Robust Estimation, Outlier Detection, and False Discovery Rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(10), pages 1131-1147.
    6. Hunt, Daniel L. & Cheng, Cheng & Pounds, Stanley, 2009. "The beta-binomial distribution for estimating the number of false rejections in microarray gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1688-1700, March.
    7. Hung-Chia Chen & James J. Chen, 2016. "Hybrid Mixture Model for Subpopulation Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 28-42, June.
    8. Ramesh Gupta & Hui Tao, 2010. "A generalized correlated binomial distribution with application in multiple testing problems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 59-77, January.
    9. József Bukszár & Edwin J. C. G. van den Oord, 2006. "Optimization of Two-Stage Genetic Designs Where Data Are Combined Using an Accurate and Efficient Approximation for Pearson's Statistic," Biometrics, The International Biometric Society, vol. 62(4), pages 1132-1137, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.