IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0014717.html
   My bibliography  Save this article

The Spatial Limitations of Current Neutral Models of Biodiversity

Author

Listed:
  • Rampal S Etienne
  • James Rosindell

Abstract

The unified neutral theory of biodiversity and biogeography is increasingly accepted as an informative null model of community composition and dynamics. It has successfully produced macro-ecological patterns such as species-area relationships and species abundance distributions. However, the models employed make many unrealistic auxiliary assumptions. For example, the popular spatially implicit version assumes a local plot exchanging migrants with a large panmictic regional source pool. This simple structure allows rigorous testing of its fit to data. In contrast, spatially explicit models assume that offspring disperse only limited distances from their parents, but one cannot as yet test the significance of their fit to data. Here we compare the spatially explicit and the spatially implicit model, fitting the most-used implicit model (with two levels, local and regional) to data simulated by the most-used spatially explicit model (where offspring are distributed about their parent on a grid according to either a radially symmetric Gaussian or a ‘fat-tailed’ distribution). Based on these fits, we express spatially implicit parameters in terms of spatially explicit parameters. This suggests how we may obtain estimates of spatially explicit parameters from spatially implicit ones. The relationship between these parameters, however, makes no intuitive sense. Furthermore, the spatially implicit model usually fits observed species-abundance distributions better than those calculated from the spatially explicit model's simulated data. Current spatially explicit neutral models therefore have limited descriptive power. However, our results suggest that a fatter tail of the dispersal kernel seems to improve the fit, suggesting that dispersal kernels with even fatter tails should be studied in future. We conclude that more advanced spatially explicit models and tools to analyze them need to be developed.

Suggested Citation

  • Rampal S Etienne & James Rosindell, 2011. "The Spatial Limitations of Current Neutral Models of Biodiversity," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-8, March.
  • Handle: RePEc:plo:pone00:0014717
    DOI: 10.1371/journal.pone.0014717
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014717
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0014717&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0014717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James S. Clark & Jason S. McLachlan, 2003. "Stability of forest biodiversity," Nature, Nature, vol. 423(6940), pages 635-638, June.
    2. Peter A. Abrams, 2001. "A world without competition," Nature, Nature, vol. 412(6850), pages 858-859, August.
    3. Igor Volkov & Jayanth R. Banavar & Fangliang He & Stephen P. Hubbell & Amos Maritan, 2005. "Density dependence explains tree species abundance and diversity in tropical forests," Nature, Nature, vol. 438(7068), pages 658-661, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Al Hammal & David Alonso & Rampal S Etienne & Stephen J Cornell, 2015. "When Can Species Abundance Data Reveal Non-neutrality?," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    2. Detto, Matteo & Muller-Landau, Helene C., 2016. "Stabilization of species coexistence in spatial models through the aggregation–segregation effect generated by local dispersal and nonspecific local interactions," Theoretical Population Biology, Elsevier, vol. 112(C), pages 97-108.
    3. Tancredi Caruso & Jeff R Powell & Matthias C Rillig, 2012. "Compositional Divergence and Convergence in Local Communities and Spatially Structured Landscapes," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzoleni, Stefano & Bonanomi, Giuliano & Giannino, Francesco & Incerti, Guido & Dekker, Stefan C. & Rietkerk, Max, 2010. "Modelling the effects of litter decomposition on tree diversity patterns," Ecological Modelling, Elsevier, vol. 221(23), pages 2784-2792.
    2. Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.
    3. Liao, Jinbao & Li, Zhenqing & Quets, Jan J. & Nijs, Ivan, 2013. "Effects of space partitioning in a plant species diversity model," Ecological Modelling, Elsevier, vol. 251(C), pages 271-278.
    4. Yosef E Maruvka & Nadav M Shnerb, 2009. "Polymorphism Data Can Reveal the Origin of Species Abundance Statistics," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-6, April.
    5. Beeravolu, Champak R. & Couteron, Pierre & Pélissier, Raphaël & Munoz, François, 2009. "Studying ecological communities from a neutral standpoint: A review of models’ structure and parameter estimation," Ecological Modelling, Elsevier, vol. 220(20), pages 2603-2610.
    6. Li, Jie & Shen, Xuzhu, 2018. "An improved neutral community model for temporal observations in microbial communities," Ecological Modelling, Elsevier, vol. 388(C), pages 108-114.
    7. Guoyu Lan & Stephan Getzin & Thorsten Wiegand & Yuehua Hu & Guishui Xie & Hua Zhu & Min Cao, 2012. "Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    8. Tiefeng Piao & Jung Hwa Chun & Hee Moon Yang & Kwangil Cheon, 2014. "Negative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-6, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0014717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.