IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6940d10.1038_nature01632.html
   My bibliography  Save this article

Stability of forest biodiversity

Author

Listed:
  • James S. Clark

    (Duke University)

  • Jason S. McLachlan

    (Duke University)

Abstract

Two hypotheses to explain potentially high forest biodiversity have different implications for the number and kinds of species that can coexist and the potential loss of biodiversity in the absence of speciation. The first hypothesis involves stabilizing mechanisms, which include tradeoffs between species in terms of their capacities to disperse to sites where competition is weak1,2,3,4, to exploit abundant resources effectively5,6 and to compete for scarce resources7. Stabilization results because competitors thrive at different times and places. An alternative, ‘neutral model’ suggests that stabilizing mechanisms may be superfluous. This explanation emphasizes ‘equalizing’ mechanisms8, because competitive exclusion of similar species is slow. Lack of ecologically relevant differences means that abundances experience random ‘neutral drift’, with slow extinction9,10,11. The relative importance of these two mechanisms is unknown, because assumptions and predictions involve broad temporal and spatial scales. Here we demonstrate that predictions of neutral drift are testable using palaeodata. The results demonstrate strong stabilizing forces. By contrast with the neutral prediction of increasing variance among sites over time, we show that variances in post-Glacial tree abundances among sites stabilize rapidly, and abundances remain coherent over broad geographical scales.

Suggested Citation

  • James S. Clark & Jason S. McLachlan, 2003. "Stability of forest biodiversity," Nature, Nature, vol. 423(6940), pages 635-638, June.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6940:d:10.1038_nature01632
    DOI: 10.1038/nature01632
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01632
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yosef E Maruvka & Nadav M Shnerb, 2009. "Polymorphism Data Can Reveal the Origin of Species Abundance Statistics," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-6, April.
    2. Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.
    3. Rampal S Etienne & James Rosindell, 2011. "The Spatial Limitations of Current Neutral Models of Biodiversity," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6940:d:10.1038_nature01632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.