IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0009931.html
   My bibliography  Save this article

A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0

Author

Listed:
  • Kuo-Chen Chou
  • Hong-Bin Shen

Abstract

Information of subcellular locations of proteins is important for in-depth studies of cell biology. It is very useful for proteomics, system biology and drug development as well. However, most existing methods for predicting protein subcellular location can only cover 5 to 12 location sites. Also, they are limited to deal with single-location proteins and hence failed to work for multiplex proteins, which can simultaneously exist at, or move between, two or more location sites. Actually, multiplex proteins of this kind usually posses some important biological functions worthy of our special notice. A new predictor called “Euk-mPLoc 2.0” is developed by hybridizing the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell wall, (3) centriole, (4) chloroplast, (5) cyanelle, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracell, (11) Golgi apparatus, (12) hydrogenosome, (13) lysosome, (14) melanosome, (15) microsome (16) mitochondria, (17) nucleus, (18) peroxisome, (19) plasma membrane, (20) plastid, (21) spindle pole body, and (22) vacuole. Compared with the existing methods for predicting eukaryotic protein subcellular localization, the new predictor is much more powerful and flexible, particularly in dealing with proteins with multiple locations and proteins without available accession numbers. For a newly-constructed stringent benchmark dataset which contains both single- and multiple-location proteins and in which none of proteins has pairwise sequence identity to any other in a same location, the overall jackknife success rate achieved by Euk-mPLoc 2.0 is more than 24% higher than those by any of the existing predictors. As a user-friendly web-server, Euk-mPLoc 2.0 is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/. For a query protein sequence of 400 amino acids, it will take about 15 seconds for the web-server to yield the predicted result; the longer the sequence is, the more time it may usually need. It is anticipated that the novel approach and the powerful predictor as presented in this paper will have a significant impact to Molecular Cell Biology, System Biology, Proteomics, Bioinformatics, and Drug Development.

Suggested Citation

  • Kuo-Chen Chou & Hong-Bin Shen, 2010. "A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-9, April.
  • Handle: RePEc:plo:pone00:0009931
    DOI: 10.1371/journal.pone.0009931
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009931
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0009931&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0009931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason R. Schnell & James J. Chou, 2008. "Structure and mechanism of the M2 proton channel of influenza A virus," Nature, Nature, vol. 451(7178), pages 591-595, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Fei Gao & Lei Chen & Yu-Dong Cai & Kai-Yan Feng & Tao Huang & Yang Jiang, 2012. "Predicting Metabolic Pathways of Small Molecules and Enzymes Based on Interaction Information of Chemicals and Proteins," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    2. Chi-Hua Tung & Chi-Wei Chen & Han-Hao Sun & Yen-Wei Chu, 2017. "Predicting human protein subcellular localization by heterogeneous and comprehensive approaches," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-14, June.
    3. Guo Sheng Han & Zu Guo Yu & Vo Anh & Anaththa P D Krishnajith & Yu-Chu Tian, 2013. "An Ensemble Method for Predicting Subnuclear Localizations from Primary Protein Structures," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    2. Robert Dobosz & Jan Mućko & Ryszard Gawinecki, 2020. "Using Chou’s 5-Step Rule to Evaluate the Stability of Tautomers: Susceptibility of 2-[(Phenylimino)-methyl]-cyclohexane-1,3-diones to Tautomerization Based on the Calculated Gibbs Free Energies," Energies, MDPI, vol. 13(1), pages 1-14, January.
    3. Kuo-Chen Chou & Hong-Bin Shen, 2010. "Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-11, June.
    4. L. Eyer & K. Hruska, 2013. "Antiviral agents targeting the influenza virus: a review and publication analysis," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 58(3), pages 113-185.
    5. Mattia L DiFrancesco & Ulf-Peter Hansen & Gerhard Thiel & Anna Moroni & Indra Schroeder, 2014. "Effect of Cytosolic pH on Inward Currents Reveals Structural Characteristics of the Proton Transport Cycle in the Influenza A Protein M2 in Cell-Free Membrane Patches of Xenopus oocytes," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-12, September.
    6. Jianzhao Gao & Wei Cui & Yajun Sheng & Jishou Ruan & Lukasz Kurgan, 2016. "PSIONplus: Accurate Sequence-Based Predictor of Ion Channels and Their Types," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-18, April.
    7. Zhisong He & Jian Zhang & Xiao-He Shi & Le-Le Hu & Xiangyin Kong & Yu-Dong Cai & Kuo-Chen Chou, 2010. "Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    8. Xingya Li & Gengping Jiang & Meipeng Jian & Chen Zhao & Jue Hou & Aaron W. Thornton & Xinyi Zhang & Jefferson Zhe Liu & Benny D. Freeman & Huanting Wang & Lei Jiang & Huacheng Zhang, 2023. "Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0009931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.