IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0008944.html
   My bibliography  Save this article

A Top-Performing Algorithm for the DREAM3 Gene Expression Prediction Challenge

Author

Listed:
  • Jianhua Ruan

Abstract

A wealth of computational methods has been developed to address problems in systems biology, such as modeling gene expression. However, to objectively evaluate and compare such methods is notoriously difficult. The DREAM (Dialogue on Reverse Engineering Assessments and Methods) project is a community-wide effort to assess the relative strengths and weaknesses of different computational methods for a set of core problems in systems biology. This article presents a top-performing algorithm for one of the challenge problems in the third annual DREAM (DREAM3), namely the gene expression prediction challenge. In this challenge, participants are asked to predict the expression levels of a small set of genes in a yeast deletion strain, given the expression levels of all other genes in the same strain and complete gene expression data for several other yeast strains. I propose a simple -nearest-neighbor (KNN) method to solve this problem. Despite its simplicity, this method works well for this challenge, sharing the “top performer” honor with a much more sophisticated method. I also describe several alternative, simple strategies, including a modified KNN algorithm that further improves the performance of the standard KNN method. The success of these methods suggests that complex methods attempting to integrate multiple data sets do not necessarily lead to better performance than simple yet robust methods. Furthermore, none of these top-performing methods, including the one by a different team, are based on gene regulatory networks, which seems to suggest that accurately modeling gene expression using gene regulatory networks is unfortunately still a difficult task.

Suggested Citation

  • Jianhua Ruan, 2010. "A Top-Performing Algorithm for the DREAM3 Gene Expression Prediction Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
  • Handle: RePEc:plo:pone00:0008944
    DOI: 10.1371/journal.pone.0008944
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008944
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008944&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0008944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara Di Ventura & Caroline Lemerle & Konstantinos Michalodimitrakis & Luis Serrano, 2006. "From in vivo to in silico biology and back," Nature, Nature, vol. 443(7111), pages 527-533, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa Aghdam & Mojtaba Ganjali & Parisa Niloofar & Changiz Eslahchi, 2016. "Inferring gene regulatory networks by an order independent algorithm using incomplete data sets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 893-913, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Lettieri & Antonio Altamura & Rosalba Giugno & Alfonso Guarino & Delfina Malandrino & Alfredo Pulvirenti & Francesco Vicidomini & Rocco Zaccagnino, 2018. "Ex Machina : Analytical platforms, Law and the Challenges of Computational Legal Science," Future Internet, MDPI, vol. 10(5), pages 1-25, April.
    2. Alessio Micheloni & Gianni Orsi & Carmelo De Maria & Giovanni Vozzi, 2015. "ADMET: ADipocyte METabolism mathematical model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(13), pages 1386-1391, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0008944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.