IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0007729.html
   My bibliography  Save this article

Common Polymorphisms Influencing Serum Uric Acid Levels Contribute to Susceptibility to Gout, but Not to Coronary Artery Disease

Author

Listed:
  • Klaus Stark
  • Wibke Reinhard
  • Martina Grassl
  • Jeanette Erdmann
  • Heribert Schunkert
  • Thomas Illig
  • Christian Hengstenberg

Abstract

Background: Recently, a large meta-analysis including over 28,000 participants identified nine different loci with association to serum uric acid (UA) levels. Since elevated serum UA levels potentially cause gout and are a possible risk factor for coronary artery disease (CAD) and myocardial infarction (MI), we performed two large case-control association analyses with participants from the German MI Family Study. In the first study, we assessed the association of the qualitative trait gout and ten single nucleotide polymorphisms (SNP) markers that showed association to UA serum levels. In the second study, the same genetic polymorphisms were analyzed for association with CAD. Methods and Findings: A total of 683 patients suffering from gout and 1,563 healthy controls from the German MI Family Study were genotyped. Nine SNPs were identified from a recently performed genome-wide meta-analysis on serum UA levels (rs12129861, rs780094, rs734553, rs2231142, rs742132, rs1183201, rs12356193, rs17300741 and rs505802). Additionally, the marker rs6855911 was included which has been associated with gout in our cohort in a previous study. SNPs rs734553 and rs6855911, located in SLC2A9, and SNP rs2231142, known to be a missense polymorphism in ABCG2, were associated with gout (p = 5.6*10−7, p = 1.1*10−7, and p = 1.3*10−3, respectively). Other SNPs in the genes PDZK1, GCKR, LRRC16A, SLC17A1-SLC17A3, SLC16A9, SLC22A11 and SLC22A12 failed the significance level. None of the ten markers were associated with risk to CAD in our study sample of 1,473 CAD cases and 1,241 CAD-free controls. Conclusion: SNP markers in SLC2A9 and ABCG2 genes were found to be strongly associated with the phenotype gout. However, not all SNP markers influencing serum UA levels were also directly associated with the clinical manifestation of gout in our study sample. In addition, none of these SNPs showed association with the risk to CAD in the German MI Family Study.

Suggested Citation

  • Klaus Stark & Wibke Reinhard & Martina Grassl & Jeanette Erdmann & Heribert Schunkert & Thomas Illig & Christian Hengstenberg, 2009. "Common Polymorphisms Influencing Serum Uric Acid Levels Contribute to Susceptibility to Gout, but Not to Coronary Artery Disease," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-7, November.
  • Handle: RePEc:plo:pone00:0007729
    DOI: 10.1371/journal.pone.0007729
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007729
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0007729&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0007729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melanie Kolz & Toby Johnson & Serena Sanna & Alexander Teumer & Veronique Vitart & Markus Perola & Massimo Mangino & Eva Albrecht & Chris Wallace & Martin Farrall & Åsa Johansson & Dale R Nyholt & Yur, 2009. "Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-10, June.
    2. B. Devlin & Kathryn Roeder, 1999. "Genomic Control for Association Studies," Biometrics, The International Biometric Society, vol. 55(4), pages 997-1004, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Yu-Fang Pei & Jian Li & Christopher J Papasian & Hong-Wen Deng, 2009. "Univariate/Multivariate Genome-Wide Association Scans Using Data from Families and Unrelated Samples," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-12, August.
    2. Dominic Holland & Oleksandr Frei & Rahul Desikan & Chun-Chieh Fan & Alexey A Shadrin & Olav B Smeland & V S Sundar & Paul Thompson & Ole A Andreassen & Anders M Dale, 2020. "Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-30, May.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Parsa Akbari & Dragana Vuckovic & Luca Stefanucci & Tao Jiang & Kousik Kundu & Roman Kreuzhuber & Erik L. Bao & Janine H. Collins & Kate Downes & Luigi Grassi & Jose A. Guerrero & Stephen Kaptoge & Ju, 2023. "A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Gang Zheng & Zhaohai Li & Mitchell H. Gail & Joseph L. Gastwirth, 2010. "Impact of Population Substructure on Trend Tests for Genetic Case–Control Association Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 196-204, March.
    7. Sandosh Padmanabhan & Olle Melander & Toby Johnson & Anna Maria Di Blasio & Wai K Lee & Davide Gentilini & Claire E Hastie & Cristina Menni & Maria Cristina Monti & Christian Delles & Stewart Laing & , 2010. "Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-11, October.
    8. Jakris Eu-ahsunthornwattana & E Nancy Miller & Michaela Fakiola & Wellcome Trust Case Control Consortium 2 & Selma M B Jeronimo & Jenefer M Blackwell & Heather J Cordell, 2014. "Comparison of Methods to Account for Relatedness in Genome-Wide Association Studies with Family-Based Data," PLOS Genetics, Public Library of Science, vol. 10(7), pages 1-20, July.
    9. Jianzhong Ma & Christopher I Amos, 2010. "Theoretical Formulation of Principal Components Analysis to Detect and Correct for Population Stratification," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-14, September.
    10. Claire L Simpson & Robert Wojciechowski & Konrad Oexle & Federico Murgia & Laura Portas & Xiaohui Li & Virginie J M Verhoeven & Veronique Vitart & Maria Schache & S Mohsen Hosseini & Pirro G Hysi & Le, 2014. "Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-19, September.
    11. Matthieu Bouaziz & Christophe Ambroise & Mickael Guedj, 2011. "Accounting for Population Stratification in Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-13, December.
    12. Aditi Shendre & Howard W Wiener & Marguerite R Irvin & Bradley E Aouizerat & Edgar T Overton & Jason Lazar & Chenglong Liu & Howard N Hodis & Nita A Limdi & Kathleen M Weber & Stephen J Gange & Degui , 2017. "Genome-wide admixture and association study of subclinical atherosclerosis in the Women’s Interagency HIV Study (WIHS)," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-23, December.
    13. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    14. Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
    15. Tamuno Alfred & Yoav Ben-Shlomo & Rachel Cooper & Rebecca Hardy & Ian J Deary & Jane Elliott & Sarah E Harris & Mika Kivimaki & Meena Kumari & Chris Power & John M Starr & Diana Kuh & Ian N M Day & th, 2013. "Associations between a Polymorphism in the Pleiotropic GCKR and Age-Related Phenotypes: The HALCyon Programme," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    16. Wang, Linglu & Li, Qizhai & Li, Zhaohai & Zheng, Gang, 2011. "Bayes factors in the presence of population stratification," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 836-841, July.
    17. Boitard Simon & Mangin Brigitte & Azaïs Jean-Marc, 2010. "Asymptotic Distribution of the "Orthogonal" Quantitative Transmission Disequilibrium Test in a Structured Population: Exact Formula," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, January.
    18. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    19. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    20. Ferguson John P. & Palejev Dean, 2014. "P-value calibration for multiple testing problems in genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(6), pages 659-673, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0007729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.