IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0002648.html
   My bibliography  Save this article

Functional Analysis of Spontaneous Cell Movement under Different Physiological Conditions

Author

Listed:
  • Hiroaki Takagi
  • Masayuki J Sato
  • Toshio Yanagida
  • Masahiro Ueda

Abstract

Cells can show not only spontaneous movement but also tactic responses to environmental signals. Since the former can be regarded as the basis to realize the latter, playing essential roles in various cellular functions, it is important to investigate spontaneous movement quantitatively at different physiological conditions in relation to a cell's physiological functions. For that purpose, we observed a series of spontaneous movements by Dictyostelium cells at different developmental periods by using a single cell tracking system. Using statistical analysis of these traced data, we found that cells showed complex dynamics with anomalous diffusion and that their velocity distribution had power-law tails in all conditions. Furthermore, as development proceeded, average velocity and persistency of the movement increased and as too did the exponential behavior in the velocity distribution. Based on these results, we succeeded in applying a generalized Langevin model to the experimental data. With this model, we discuss the relation of spontaneous cell movement to cellular physiological function and its relevance to behavioral strategies for cell survival.

Suggested Citation

  • Hiroaki Takagi & Masayuki J Sato & Toshio Yanagida & Masahiro Ueda, 2008. "Functional Analysis of Spontaneous Cell Movement under Different Physiological Conditions," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-7, July.
  • Handle: RePEc:plo:pone00:0002648
    DOI: 10.1371/journal.pone.0002648
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002648
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002648&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0002648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azevedo, T.N. & Rizzi, L.G., 2022. "Time-correlated forces and biological variability in cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Laurent Golé & Charlotte Rivière & Yoshinori Hayakawa & Jean-Paul Rieu, 2011. "A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    3. de Almeida, Rita M.C. & Giardini, Guilherme S.Y. & Vainstein, Mendeli & Glazier, James A. & Thomas, Gilberto L., 2022. "Exact solution for the Anisotropic Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    4. Yuta Yamamoto & Shota Miyazaki & Kenshiro Maruyama & Ryo Kobayashi & Minh Nguyen Tuyet Le & Ayumu Kano & Akiko Kondow & Shuji Fujii & Kiyoshi Ohnuma, 2018. "Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-13, September.
    5. Can Guven & Erin Rericha & Edward Ott & Wolfgang Losert, 2013. "Modeling and Measuring Signal Relay in Noisy Directed Migration of Cell Groups," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0002648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.