IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0000033.html
   My bibliography  Save this article

Comparing Models for Early Warning Systems of Neglected Tropical Diseases

Author

Listed:
  • Luis Fernando Chaves
  • Mercedes Pascual

Abstract

Background: Early warning systems (EWS) are management tools to predict the occurrence of epidemics of infectious diseases. While climate-based EWS have been developed for malaria, no standard protocol to evaluate and compare EWS has been proposed. Additionally, there are several neglected tropical diseases whose transmission is sensitive to environmental conditions, for which no EWS have been proposed, though they represent a large burden for the affected populations. Methodology/Principal Findings: In the present paper, an overview of the available linear and non-linear tools to predict seasonal time series of diseases is presented. Also, a general methodology to compare and evaluate models for prediction is presented and illustrated using American cutaneous leishmaniasis, a neglected tropical disease, as an example. The comparison of the different models using the predictive R2 for forecasts of “out-of-fit” data (data that has not been used to fit the models) shows that for the several linear and non-linear models tested, the best results were obtained for seasonal autoregressive (SAR) models that incorporate climatic covariates. An additional bootstrapping experiment shows that the relationship of the disease time series with the climatic covariates is strong and consistent for the SAR modeling approach. While the autoregressive part of the model is not significant, the exogenous forcing due to climate is always statistically significant. Prediction accuracy can vary from 50% to over 80% for disease burden at time scales of one year or shorter. Conclusions/Significance: This study illustrates a protocol for the development of EWS that includes three main steps: (i) the fitting of different models using several methodologies, (ii) the comparison of models based on the predictability of “out-of-fit” data, and (iii) the assessment of the robustness of the relationship between the disease and the variables in the model selected as best with an objective criterion. Author Summary: Early Warning Systems (EWS) are management tools to predict the occurrence of epidemics. They are based on the dependence of a given infectious disease on environmental variables. Although several neglected tropical diseases are sensitive to the effect of climate, our ability to predict their dynamics has been barely studied. In this paper, we use several models to determine if the relationship between cases and climatic variability is robust—that is, not simply an artifact of model choice. We propose that EWS should be based on results from several models that are to be compared in terms of their ability to predict future number of cases. We use a specific metric for this comparison known as the predictive R2, which measures the accuracy of the predictions. For example, an R2 of 1 indicates perfect accuracy for predictions that perfectly match observed cases. For cutaneous leishmaniasis, R2 values range from 72% to77%, well above predictions using mean seasonal values (64%). We emphasize that predictability should be evaluated with observations that have not been used to fit the model. Finally, we argue that EWS should incorporate climatic variables that are known to have a consistent relationship with the number of observed cases.

Suggested Citation

  • Luis Fernando Chaves & Mercedes Pascual, 2007. "Comparing Models for Early Warning Systems of Neglected Tropical Diseases," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 1(1), pages 1-6, October.
  • Handle: RePEc:plo:pntd00:0000033
    DOI: 10.1371/journal.pntd.0000033
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0000033
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0000033&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0000033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    2. Luis Fernando Chaves & Mercedes Pascual, 2006. "Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease," PLOS Medicine, Public Library of Science, vol. 3(8), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margherita Grasso & Matteo Manera & Aline Chiabai & Anil Markandya, 2012. "The Health Effects of Climate Change: A Survey of Recent Quantitative Research," IJERPH, MDPI, vol. 9(5), pages 1-25, April.
    2. Chaves, Luis Fernando & Friberg, Mariel D. & Hurtado, Lisbeth A. & Marín Rodríguez, Rodrigo & O'Sullivan, David & Bergmann, Luke R., 2022. "Trade, uneven development and people in motion: Used territories and the initial spread of COVID-19 in Mesoamerica and the Caribbean," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. R. S. Sparks & T. Keighley & D. Muscatello, 2011. "Optimal exponentially weighted moving average (EWMA) plans for detecting seasonal epidemics when faced with non-homogeneous negative binomial counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2165-2181.
    4. Lachlan McIver & Alistair Woodward & Seren Davies & Tebikau Tibwe & Steven Iddings, 2014. "Assessment of the Health Impacts of Climate Change in Kiribati," IJERPH, MDPI, vol. 11(5), pages 1-17, May.
    5. Rodríguez, Diego J. & Delgado, Laura & Ramos, Santiago & Weinberger, Vanessa & Rangel, Yadira, 2013. "A model for the dynamics of malaria in Paria Peninsula, Sucre State, Venezuela," Ecological Modelling, Elsevier, vol. 259(C), pages 1-9.
    6. Emily S Nightingale & Lloyd A C Chapman & Sridhar Srikantiah & Swaminathan Subramanian & Purushothaman Jambulingam & Johannes Bracher & Mary M Cameron & Graham F Medley, 2020. "A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(7), pages 1-21, July.
    7. Ting-Wu Chuang & Luis Fernando Chaves & Po-Jiang Chen, 2017. "Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel C Medina & Sally E Findley & Boubacar Guindo & Seydou Doumbia, 2007. "Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-13, November.
    2. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    3. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    4. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    5. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    6. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    7. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    8. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    9. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    10. Margherita Grasso & Matteo Manera & Aline Chiabai & Anil Markandya, 2012. "The Health Effects of Climate Change: A Survey of Recent Quantitative Research," IJERPH, MDPI, vol. 9(5), pages 1-25, April.
    11. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    12. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    13. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    14. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    15. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    16. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    17. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    18. Laetitia H. M. Schmitt & Hilary M. Graham & Piran C. L. White, 2016. "Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    19. Neha Sinha, 2012. "Climate Change Issues and Global Negotiations," Insight on Africa, , vol. 4(1), pages 35-57, January.
    20. Liukuan Zhang & Xiaoxiao Shi & Qing Chang, 2022. "Exploring Adaptive UHI Mitigation Solutions by Spatial Heterogeneity of Land Surface Temperature and Its Relationship to Urban Morphology in Historical Downtown Blocks, Beijing," Land, MDPI, vol. 11(4), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0000033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.