IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1009584.html
   My bibliography  Save this article

Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios

Author

Listed:
  • Debashree Ray
  • Sowmya Venkataraghavan
  • Wanying Zhang
  • Elizabeth J Leslie
  • Jacqueline B Hetmanski
  • Seth M Weinberg
  • Jeffrey C Murray
  • Mary L Marazita
  • Ingo Ruczinski
  • Margaret A Taub
  • Terri H Beaty

Abstract

Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts– the most common craniofacial birth defects in humans– are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP), which are traditionally considered to be etiologically distinct. However, some evidence of shared genetic risk in IRF6, GRHL3 and ARHGAP29 regions exists; only FOXE1 has been recognized as significantly associated with both CL/P and CP in genome-wide association studies (GWAS). We used a new statistical approach, PLACO (pleiotropic analysis under composite null), on a combined multi-ethnic GWAS of 2,771 CL/P and 611 CP case-parent trios. At the genome-wide significance threshold of 5 × 10−8, PLACO identified 1 locus in 1q32.2 (IRF6) that appears to increase risk for one OFC subgroup but decrease risk for the other. At a suggestive significance threshold of 10−6, we found 5 more loci with compelling candidate genes having opposite effects on CL/P and CP: 1p36.13 (PAX7), 3q29 (DLG1), 4p13 (LIMCH1), 4q21.1 (SHROOM3) and 17q22 (NOG). Additionally, we replicated the recognized shared locus 9q22.33 (FOXE1), and identified 2 loci in 19p13.12 (RAB8A) and 20q12 (MAFB) that appear to influence risk of both CL/P and CP in the same direction. We found locus-specific effects may vary by racial/ethnic group at these regions of genetic overlap, and failed to find evidence of sex-specific differences. We confirmed shared etiology of the two OFC subtypes comprising CL/P, and additionally found suggestive evidence of differences in their pathogenesis at 2 loci of genetic overlap. Our novel findings include 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Our in-silico validation showed PLACO is robust to subtype-specific effects, and can achieve massive power gains over existing approaches for identifying genetic overlap between disease subtypes. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.Author summary: Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). While nearly forty risk genes have been identified for CL/P, few risk genes are known for CP. We used a new statistical method, PLACO, to identify genetic variants influencing risk of both CL/P and CP either in the same direction or in opposite directions. In a combined multi-ethnic genome-wide study of 2,771 CL/P and 611 CP case-parent trios, we discovered 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Of these loci, 2 were identified at the genome-wide threshold, and the rest at a suggestive significance threshold of 10−6. Locus-specific effects appear to vary by racial/ethnic group at these regions of genetic overlap. We replicated the shared genetic etiology of subtypes underlying CL/P, and further discovered loci of genetic overlap exhibiting etiologic differences. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.

Suggested Citation

  • Debashree Ray & Sowmya Venkataraghavan & Wanying Zhang & Elizabeth J Leslie & Jacqueline B Hetmanski & Seth M Weinberg & Jeffrey C Murray & Mary L Marazita & Ingo Ruczinski & Margaret A Taub & Terri H, 2021. "Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-28, July.
  • Handle: RePEc:plo:pgen00:1009584
    DOI: 10.1371/journal.pgen.1009584
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009584
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1009584&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1009584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huan Liu & Elizabeth J. Leslie & Jenna C. Carlson & Terri H. Beaty & Mary L. Marazita & Andrew C. Lidral & Robert A. Cornell, 2017. "Identification of common non-coding variants at 1p22 that are functional for non-syndromic orofacial clefting," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    2. Holger Schwender & Margaret A. Taub & Terri H. Beaty & Mary L. Marazita & Ingo Ruczinski, 2012. "Rapid Testing of SNPs and Gene–Environment Interactions in Case–Parent Trio Data Based on Exact Analytic Parameter Estimation," Biometrics, The International Biometric Society, vol. 68(3), pages 766-773, September.
    3. Bryan N Howie & Peter Donnelly & Jonathan Marchini, 2009. "A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-15, June.
    4. Laurence J Howe & Myoung Keun Lee & Gemma C Sharp & George Davey Smith & Beate St Pourcain & John R Shaffer & Kerstin U Ludwig & Elisabeth Mangold & Mary L Marazita & Eleanor Feingold & Alexei Zhurov , 2018. "Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology," PLOS Genetics, Public Library of Science, vol. 14(8), pages 1-18, August.
    5. Kyoko Watanabe & Erdogan Taskesen & Arjen Bochoven & Danielle Posthuma, 2017. "Functional mapping and annotation of genetic associations with FUMA," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianmarco Mignogna & Caitlin E. Carey & Robbee Wedow & Nikolas Baya & Mattia Cordioli & Nicola Pirastu & Rino Bellocco & Kathryn Fiuza Malerbi & Michel G. Nivard & Benjamin M. Neale & Raymond K. Walte, 2023. "Patterns of item nonresponse behaviour to survey questionnaires are systematic and associated with genetic loci," Nature Human Behaviour, Nature, vol. 7(8), pages 1371-1387, August.
    2. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    3. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Chuan Gao & Nan Wang & Xiuqing Guo & Julie T Ziegler & Kent D Taylor & Anny H Xiang & Yang Hai & Steven J Kridel & Jerry L Nadler & Fouad Kandeel & Leslie J Raffel & Yii-Der I Chen & Jill M Norris & J, 2015. "A Comprehensive Analysis of Common and Rare Variants to Identify Adiposity Loci in Hispanic Americans: The IRAS Family Study (IRASFS)," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    5. Bhuwan Khatri & Kandice L. Tessneer & Astrid Rasmussen & Farhang Aghakhanian & Tove Ragna Reksten & Adam Adler & Ilias Alevizos & Juan-Manuel Anaya & Lara A. Aqrawi & Eva Baecklund & Johan G. Brun & S, 2022. "Genome-wide association study identifies Sjögren’s risk loci with functional implications in immune and glandular cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Mathias Seviiri & Matthew H. Law & Jue-Sheng Ong & Puya Gharahkhani & Pierre Fontanillas & Catherine M. Olsen & David C. Whiteman & Stuart MacGregor, 2022. "A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Paul S de Vries & Maria Sabater-Lleal & Daniel I Chasman & Stella Trompet & Tarunveer S Ahluwalia & Alexander Teumer & Marcus E Kleber & Ming-Huei Chen & Jie Jin Wang & John R Attia & Riccardo E Mario, 2017. "Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.
    8. Bo Jiang & Jun S. Liu, 2015. "Bayesian Partition Models for Identifying Expression Quantitative Trait Loci," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1350-1361, December.
    9. Paul R. H. J. Timmers & James F. Wilson & Peter K. Joshi & Joris Deelen, 2020. "Multivariate genomic scan implicates novel loci and haem metabolism in human ageing," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    10. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Olga A Vsevolozhskaya & Min Shi & Fengjiao Hu & Dmitri V Zaykin, 2020. "DOT: Gene-set analysis by combining decorrelated association statistics," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-25, April.
    12. Danni A. Gadd & Robert F. Hillary & Daniel L. McCartney & Liu Shi & Aleks Stolicyn & Neil A. Robertson & Rosie M. Walker & Robert I. McGeachan & Archie Campbell & Shen Xueyi & Miruna C. Barbu & Claire, 2022. "Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Rakesh Chettier & Lesa Nelson & James W Ogilvie & Hans M Albertsen & Kenneth Ward, 2015. "Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-11, February.
    14. Michel S. Naslavsky & Marilia O. Scliar & Guilherme L. Yamamoto & Jaqueline Yu Ting Wang & Stepanka Zverinova & Tatiana Karp & Kelly Nunes & José Ricardo Magliocco Ceroni & Diego Lima Carvalho & Carlo, 2022. "Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    18. Wendiao Zhang & Ming Zhang & Zhenhong Xu & Hongye Yan & Huimin Wang & Jiamei Jiang & Juan Wan & Beisha Tang & Chunyu Liu & Chao Chen & Qingtuan Meng, 2023. "Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    20. Anshuman Sewda & A J Agopian & Elizabeth Goldmuntz & Hakon Hakonarson & Bernice E Morrow & Fadi Musfee & Deanne Taylor & Laura E Mitchell & on behalf of the Pediatric Cardiac Genomics Consortium, 2020. "Gene-based analyses of the maternal genome implicate maternal effect genes as risk factors for conotruncal heart defects," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.