IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1005498.html
   My bibliography  Save this article

A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism

Author

Listed:
  • Anu Loukola
  • Jadwiga Buchwald
  • Richa Gupta
  • Teemu Palviainen
  • Jenni Hällfors
  • Emmi Tikkanen
  • Tellervo Korhonen
  • Miina Ollikainen
  • Antti-Pekka Sarin
  • Samuli Ripatti
  • Terho Lehtimäki
  • Olli Raitakari
  • Veikko Salomaa
  • Richard J Rose
  • Rachel F Tyndale
  • Jaakko Kaprio

Abstract

Individuals with fast nicotine metabolism typically smoke more and thus have a greater risk for smoking-induced diseases. Further, the efficacy of smoking cessation pharmacotherapy is dependent on the rate of nicotine metabolism. Our objective was to use nicotine metabolite ratio (NMR), an established biomarker of nicotine metabolism rate, in a genome-wide association study (GWAS) to identify novel genetic variants influencing nicotine metabolism. A heritability estimate of 0.81 (95% CI 0.70–0.88) was obtained for NMR using monozygotic and dizygotic twins of the FinnTwin cohort. We performed a GWAS in cotinine-verified current smokers of three Finnish cohorts (FinnTwin, Young Finns Study, FINRISK2007), followed by a meta-analysis of 1518 subjects, and annotated the genome-wide significant SNPs with methylation quantitative loci (meQTL) analyses. We detected association on 19q13 with 719 SNPs exceeding genome-wide significance within a 4.2 Mb region. The strongest evidence for association emerged for CYP2A6 (min p = 5.77E-86, in intron 4), the main metabolic enzyme for nicotine. Other interesting genes with genome-wide significant signals included CYP2B6, CYP2A7, EGLN2, and NUMBL. Conditional analyses revealed three independent signals on 19q13, all located within or in the immediate vicinity of CYP2A6. A genetic risk score constructed using the independent signals showed association with smoking quantity (p = 0.0019) in two independent Finnish samples. Our meQTL results showed that methylation values of 16 CpG sites within the region are affected by genotypes of the genome-wide significant SNPs, and according to causal inference test, for some of the SNPs the effect on NMR is mediated through methylation. To our knowledge, this is the first GWAS on NMR. Our results enclose three independent novel signals on 19q13.2. The detected CYP2A6 variants explain a strikingly large fraction of variance (up to 31%) in NMR in these study samples. Further, we provide evidence for plausible epigenetic mechanisms influencing NMR.Author Summary: Nicotine metabolism rate significantly varies between individuals and affects smoking behavior. Individuals with fast nicotine metabolism typically smoke more and thus have a greater risk for smoking-induced diseases. Further, the efficacy of smoking cessation pharmacotherapy is dependent on nicotine metabolism rate. Twin and family studies have shown that genes influence nicotine metabolism; however, only a minor fraction of variance in inter-individual differences in nicotine metabolism is accounted for by known reduced activity variants in CYP2A6, the main metabolic enzyme for nicotine. Here we utilized a biomarker of nicotine metabolism (nicotine metabolite ratio, NMR) in a genome-wide association study of three Finnish cohorts to identify novel genetic variants influencing nicotine metabolism rate. Our results enclose three independent novel signals in CYP2A6. The detected variants explain a strikingly large fraction of variance (up to 31%) in NMR in the study samples. A genetic risk score constructed using the independent signals predicts smoking quantity in two independent Finnish samples. Further, we enclose evidence for plausible epigenetic mechanisms influencing NMR. With the advent of other nicotine delivery devices than tobacco, such as e-cigarettes, the need to understand the long-term consequences and action mechanisms of nicotine and its metabolism are of high public health relevance.

Suggested Citation

  • Anu Loukola & Jadwiga Buchwald & Richa Gupta & Teemu Palviainen & Jenni Hällfors & Emmi Tikkanen & Tellervo Korhonen & Miina Ollikainen & Antti-Pekka Sarin & Samuli Ripatti & Terho Lehtimäki & Olli Ra, 2015. "A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism," PLOS Genetics, Public Library of Science, vol. 11(9), pages 1-23, September.
  • Handle: RePEc:plo:pgen00:1005498
    DOI: 10.1371/journal.pgen.1005498
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005498
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005498&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1005498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryan N Howie & Peter Donnelly & Jonathan Marchini, 2009. "A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Sailer & Giorgia Sebastiani & Vicente Andreu-Férnández & Oscar García-Algar, 2019. "Impact of Nicotine Replacement and Electronic Nicotine Delivery Systems on Fetal Brain Development," IJERPH, MDPI, vol. 16(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    2. Chuan Gao & Nan Wang & Xiuqing Guo & Julie T Ziegler & Kent D Taylor & Anny H Xiang & Yang Hai & Steven J Kridel & Jerry L Nadler & Fouad Kandeel & Leslie J Raffel & Yii-Der I Chen & Jill M Norris & J, 2015. "A Comprehensive Analysis of Common and Rare Variants to Identify Adiposity Loci in Hispanic Americans: The IRAS Family Study (IRASFS)," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    3. Paul S de Vries & Maria Sabater-Lleal & Daniel I Chasman & Stella Trompet & Tarunveer S Ahluwalia & Alexander Teumer & Marcus E Kleber & Ming-Huei Chen & Jie Jin Wang & John R Attia & Riccardo E Mario, 2017. "Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.
    4. Bo Jiang & Jun S. Liu, 2015. "Bayesian Partition Models for Identifying Expression Quantitative Trait Loci," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1350-1361, December.
    5. Rakesh Chettier & Lesa Nelson & James W Ogilvie & Hans M Albertsen & Kenneth Ward, 2015. "Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-11, February.
    6. Michel S. Naslavsky & Marilia O. Scliar & Guilherme L. Yamamoto & Jaqueline Yu Ting Wang & Stepanka Zverinova & Tatiana Karp & Kelly Nunes & José Ricardo Magliocco Ceroni & Diego Lima Carvalho & Carlo, 2022. "Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    8. Anshuman Sewda & A J Agopian & Elizabeth Goldmuntz & Hakon Hakonarson & Bernice E Morrow & Fadi Musfee & Deanne Taylor & Laura E Mitchell & on behalf of the Pediatric Cardiac Genomics Consortium, 2020. "Gene-based analyses of the maternal genome implicate maternal effect genes as risk factors for conotruncal heart defects," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    9. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    10. Carl Nettelblad, 2013. "Breakdown of Methods for Phasing and Imputation in the Presence of Double Genotype Sharing," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-5, March.
    11. Viinikainen, Jutta & Bryson, Alex & Böckerman, Petri & Kari, Jaana T. & Lehtimäki, Terho & Raitakari, Olli & Viikari, Jorma & Pehkonen, Jaakko, 2022. "Does better education mitigate risky health behavior? A mendelian randomization study," Economics & Human Biology, Elsevier, vol. 46(C).
    12. Cavin K Ward-Caviness & Paul S de Vries & Kerri L Wiggins & Jennifer E Huffman & Lisa R Yanek & Lawrence F Bielak & Franco Giulianini & Xiuqing Guo & Marcus E Kleber & Tim Kacprowski & Stefan Groß & A, 2019. "Mendelian randomization evaluation of causal effects of fibrinogen on incident coronary heart disease," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
    13. Ani Manichaikul & Xin-Qun Wang & Solomon K Musani & David M Herrington & Wendy S Post & James G Wilson & Stephen S Rich & Annabelle Rodriguez, 2015. "Association of the Lipoprotein Receptor SCARB1 Common Missense Variant rs4238001 with Incident Coronary Heart Disease," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    14. Morten Dybdahl Krebs & Gonçalo Espregueira Themudo & Michael Eriksen Benros & Ole Mors & Anders D. Børglum & David Hougaard & Preben Bo Mortensen & Merete Nordentoft & Michael J. Gandal & Chun Chieh F, 2021. "Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. Heejung Shim & Daniel I Chasman & Joshua D Smith & Samia Mora & Paul M Ridker & Deborah A Nickerson & Ronald M Krauss & Matthew Stephens, 2015. "A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-20, April.
    16. Mette K Andersen & Emil Jørsboe & Line Skotte & Kristian Hanghøj & Camilla H Sandholt & Ida Moltke & Niels Grarup & Timo Kern & Yuvaraj Mahendran & Bolette Søborg & Peter Bjerregaard & Christina V L L, 2020. "The derived allele of a novel intergenic variant at chromosome 11 associates with lower body mass index and a favorable metabolic phenotype in Greenlanders," PLOS Genetics, Public Library of Science, vol. 16(1), pages 1-17, January.
    17. Gianmarco Mignogna & Caitlin E. Carey & Robbee Wedow & Nikolas Baya & Mattia Cordioli & Nicola Pirastu & Rino Bellocco & Kathryn Fiuza Malerbi & Michel G. Nivard & Benjamin M. Neale & Raymond K. Walte, 2023. "Patterns of item nonresponse behaviour to survey questionnaires are systematic and associated with genetic loci," Nature Human Behaviour, Nature, vol. 7(8), pages 1371-1387, August.
    18. Xiaodong Cai & Juan Andrés Bazerque & Georgios B Giannakis, 2013. "Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    19. Hans M Albertsen & Rakesh Chettier & Pamela Farrington & Kenneth Ward, 2013. "Genome-Wide Association Study Link Novel Loci to Endometriosis," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    20. Gemma Cadby & Corey Giles & Phillip E. Melton & Kevin Huynh & Natalie A. Mellett & Thy Duong & Anh Nguyen & Michelle Cinel & Alex Smith & Gavriel Olshansky & Tingting Wang & Marta Brozynska & Mike Ino, 2022. "Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1005498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.