IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1004171.html
   My bibliography  Save this article

Negative Feedback and Transcriptional Overshooting in a Regulatory Network for Horizontal Gene Transfer

Author

Listed:
  • Raul Fernandez-Lopez
  • Irene del Campo
  • Carlos Revilla
  • Ana Cuevas
  • Fernando de la Cruz

Abstract

Horizontal gene transfer (HGT) is a major force driving bacterial evolution. Because of their ability to cross inter-species barriers, bacterial plasmids are essential agents for HGT. This ability, however, poses specific requisites on plasmid physiology, in particular the need to overcome a multilevel selection process with opposing demands. We analyzed the transcriptional network of plasmid R388, one of the most promiscuous plasmids in Proteobacteria. Transcriptional analysis by fluorescence expression profiling and quantitative PCR revealed a regulatory network controlled by six transcriptional repressors. The regulatory network relied on strong promoters, which were tightly repressed in negative feedback loops. Computational simulations and theoretical analysis indicated that this architecture would show a transcriptional burst after plasmid conjugation, linking the magnitude of the feedback gain with the intensity of the transcriptional burst. Experimental analysis showed that transcriptional overshooting occurred when the plasmid invaded a new population of susceptible cells. We propose that transcriptional overshooting allows genome rebooting after horizontal gene transfer, and might have an adaptive role in overcoming the opposing demands of multilevel selection.Author Summary: In the environment, bacteria often evolve by the acquisition of new genes from different species. Plasmids are small DNA molecules that mediate horizontal gene transfer in bacteria, thus they are fundamental agents for the spread of antibiotic resistances. Plasmids replicate inside the bacterial cytoplasm, and propagate infectiously by contact. Plasmids control these two ways of multiplication, but like many other symbionts they suffer from a tradeoff. If plasmids become very infective, they can spread fast and successfully, but this damages the bacterial hosts they depend upon. If, on the contrary, plasmids become very mild, the host is able to grow better but the ability of plasmids to infect new hosts is hampered. We have studied the regulatory mechanisms plasmids use to overcome this paradox. We discovered that negative feedback, a regulatory motif ubiquitous in the plasmid network, allows transient activation of plasmid functions immediately after plasmids invade a new host. This might be an adaptive strategy for plasmids to be highly infective without damaging their hosts, and it illustrates a natural mechanism for DNA transplantation that could be implemented in synthetic genomic transplants.

Suggested Citation

  • Raul Fernandez-Lopez & Irene del Campo & Carlos Revilla & Ana Cuevas & Fernando de la Cruz, 2014. "Negative Feedback and Transcriptional Overshooting in a Regulatory Network for Horizontal Gene Transfer," PLOS Genetics, Public Library of Science, vol. 10(2), pages 1-15, February.
  • Handle: RePEc:plo:pgen00:1004171
    DOI: 10.1371/journal.pgen.1004171
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004171
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1004171&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1004171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
    2. D. W. Austin & M. S. Allen & J. M. McCollum & R. D. Dar & J. R. Wilgus & G. S. Sayler & N. F. Samatova & C. D. Cox & M. L. Simpson, 2006. "Gene network shaping of inherent noise spectra," Nature, Nature, vol. 439(7076), pages 608-611, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liming Wang & Jack Xin & Qing Nie, 2010. "A Critical Quantity for Noise Attenuation in Feedback Systems," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-17, April.
    2. Silke Neumann & Linda Løvdok & Kajetan Bentele & Johannes Meisig & Ekkehard Ullner & Ferencz S Paldy & Victor Sourjik & Markus Kollmann, 2014. "Exponential Signaling Gain at the Receptor Level Enhances Signal-to-Noise Ratio in Bacterial Chemotaxis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    3. Yichen Li & Yumin Li & Hui Zhang & Yong Chen, 2011. "MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-9, October.
    4. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    5. Cencetti, Giulia & Battiston, Federico & Carletti, Timoteo & Fanelli, Duccio, 2020. "Generalized patterns from local and non local reactions," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Kyung H Kim & Herbert M Sauro, 2012. "Adjusting Phenotypes by Noise Control," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
    8. Alexander Anders & Bhaswar Ghosh & Timo Glatter & Victor Sourjik, 2020. "Design of a MAPK signalling cascade balances energetic cost versus accuracy of information transmission," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    9. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    10. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    12. Tanya L Leise & Connie W Wang & Paula J Gitis & David K Welsh, 2012. "Persistent Cell-Autonomous Circadian Oscillations in Fibroblasts Revealed by Six-Week Single-Cell Imaging of PER2::LUC Bioluminescence," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    13. Gentian Buzi & Mustafa Khammash, 2016. "Implementation Considerations, Not Topological Differences, Are the Main Determinants of Noise Suppression Properties in Feedback and Incoherent Feedforward Circuits," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-16, June.
    14. Frank J Bruggeman & Nils Blüthgen & Hans V Westerhoff, 2009. "Noise Management by Molecular Networks," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-11, September.
    15. Alex J. H. Fedorec & Neythen J. Treloar & Ke Yan Wen & Linda Dekker & Qing Hsuan Ong & Gabija Jurkeviciute & Enbo Lyu & Jack W. Rutter & Kathleen J. Y. Zhang & Luca Rosa & Alexey Zaikin & Chris P. Bar, 2024. "Emergent digital bio-computation through spatial diffusion and engineered bacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    17. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    18. Andy Phaiboun & Yiming Zhang & Boryung Park & Minsu Kim, 2015. "Survival Kinetics of Starving Bacteria Is Biphasic and Density-Dependent," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-18, April.
    19. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    20. Theinmozhi Arulraj & Debashis Barik, 2018. "Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1004171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.