IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1000623.html
   My bibliography  Save this article

Genome-Wide Association Study Implicates Chromosome 9q21.31 as a Susceptibility Locus for Asthma in Mexican Children

Author

Listed:
  • Dana B Hancock
  • Isabelle Romieu
  • Min Shi
  • Juan-Jose Sienra-Monge
  • Hao Wu
  • Grace Y Chiu
  • Huiling Li
  • Blanca Estela del Rio-Navarro
  • Saffron A G Willis-Owens
  • Scott T Weiss
  • Benjamin A Raby
  • Hong Gao
  • Celeste Eng
  • Rocio Chapela
  • Esteban G Burchard
  • Hua Tang
  • Patrick F Sullivan
  • Stephanie J London

Abstract

Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma.Author Summary: Asthma is a leading chronic childhood disease with a presumed strong genetic component, but no genes have been definitely shown to influence asthma development. Few genetic studies of asthma have included Hispanic populations. Here, we conducted a genome-wide association study of asthma in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents to identify novel genetic variation for childhood asthma. We implicated several polymorphisms in or near TLE4 on chromosome 9q21.31 (a novel candidate region for childhood asthma) and replicated one polymorphism in an independent study of childhood-onset asthmatics with atopy and their parents of Mexican ethnicity. Hispanics have differing proportions of Native American, European, and African ancestries, and we found less Native American ancestry than expected at chromosome 9q21.31. This suggests that chromosome 9q21.31 may underlie ethnic differences in childhood asthma and that future replication would be most effective in populations with Native American ancestry. Analysis of publicly available genome-wide expression data revealed that association signals in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of the overall GWAS findings and the multigenic etiology of asthma.

Suggested Citation

  • Dana B Hancock & Isabelle Romieu & Min Shi & Juan-Jose Sienra-Monge & Hao Wu & Grace Y Chiu & Huiling Li & Blanca Estela del Rio-Navarro & Saffron A G Willis-Owens & Scott T Weiss & Benjamin A Raby & , 2009. "Genome-Wide Association Study Implicates Chromosome 9q21.31 as a Susceptibility Locus for Asthma in Mexican Children," PLOS Genetics, Public Library of Science, vol. 5(8), pages 1-11, August.
  • Handle: RePEc:plo:pgen00:1000623
    DOI: 10.1371/journal.pgen.1000623
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000623
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000623&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1000623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miriam F. Moffatt & Michael Kabesch & Liming Liang & Anna L. Dixon & David Strachan & Simon Heath & Martin Depner & Andrea von Berg & Albrecht Bufe & Ernst Rietschel & Andrea Heinzmann & Burkard Simma, 2007. "Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma," Nature, Nature, vol. 448(7152), pages 470-473, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Yin & Jian Zheng & Qiuqiu He & Xuan Zhang & Xuzichao Li & Yongjian Ma & Xiao Liang & Jiaqi Gao & Benjamin L. Kocsis & Zhuang Li & Xiang Liu & Neal M. Alto & Long Li & Heng Zhang, 2023. "Insights into the GSDMB-mediated cellular lysis and its targeting by IpaH7.8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Lina-Marcela Diaz-Gallo & Elena Sánchez & Norberto Ortego-Centeno & Jose Mario Sabio & Francisco J García-Hernández & Enrique de Ramón & Miguel A González-Gay & Torsten Witte & Hans-Joachim Anders & M, 2013. "Evidence of New Risk Genetic Factor to Systemic Lupus Erythematosus: The UBASH3A Gene," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-5, April.
    3. Guangdie Yang & Junjun Chen & Fei Xu & Zhang Bao & Yake Yao & Jianying Zhou, 2014. "Association between Tumor Necrosis Factor-α rs1800629 Polymorphism and Risk of Asthma: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    4. Joverlyn Gaudillo & Jae Joseph Russell Rodriguez & Allen Nazareno & Lei Rigi Baltazar & Julianne Vilela & Rommel Bulalacao & Mario Domingo & Jason Albia, 2019. "Machine learning approach to single nucleotide polymorphism-based asthma prediction," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    5. Ryan Abo & Gregory D Jenkins & Liewei Wang & Brooke L Fridley, 2012. "Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
    6. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    7. Tian Xie & Peng Liu & Xinyue Wu & Feitong Dong & Zike Zhang & Jian Yue & Usha Mahawar & Faheem Farooq & Hisham Vohra & Qi Fang & Wenchen Liu & Binks W. Wattenberg & Xin Gong, 2023. "Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Adaikalavan Ramasamy & Mikko Kuokkanen & Sailaja Vedantam & Zofia K Gajdos & Alexessander Couto Alves & Helen N Lyon & Manuel A R Ferreira & David P Strachan & Jing Hua Zhao & Michael J Abramson & Mat, 2012. "Genome-Wide Association Studies of Asthma in Population-Based Cohorts Confirm Known and Suggested Loci and Identify an Additional Association near HLA," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    9. Thorunn A. Olafsdottir & Gudmar Thorleifsson & Aitzkoa Lopez de Lapuente Portilla & Stefan Jonsson & Lilja Stefansdottir & Abhishek Niroula & Aslaug Jonasdottir & Hannes P. Eggertsson & Gisli H. Halld, 2024. "Sequence variants influencing the regulation of serum IgG subclass levels," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Michael A Nalls & David J Couper & Toshiko Tanaka & Frank J A van Rooij & Ming-Huei Chen & Albert V Smith & Daniela Toniolo & Neil A Zakai & Qiong Yang & Andreas Greinacher & Andrew R Wood & Melissa G, 2011. "Multiple Loci Are Associated with White Blood Cell Phenotypes," PLOS Genetics, Public Library of Science, vol. 7(6), pages 1-16, June.
    11. Leyao Wang & William Murk & Andrew T DeWan, 2015. "Genome-Wide Gene by Environment Interaction Analysis Identifies Common SNPs at 17q21.2 that Are Associated with Increased Body Mass Index Only among Asthmatics," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-14, December.
    12. Josine L Min & Jennifer M Taylor & J Brent Richards & Tim Watts & Fredrik H Pettersson & John Broxholme & Kourosh R Ahmadi & Gabriela L Surdulescu & Ernesto Lowy & Christian Gieger & Chris Newton-Cheh, 2011. "The Use of Genome-Wide eQTL Associations in Lymphoblastoid Cell Lines to Identify Novel Genetic Pathways Involved in Complex Traits," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-14, July.
    13. Laura L Elo & Benno Schwikowski, 2013. "Analysis of Time-Resolved Gene Expression Measurements across Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    14. Ya Cui & Frederick J. Arnold & Fanglue Peng & Dan Wang & Jason Sheng Li & Sebastian Michels & Eric J. Wagner & Albert R. Spada & Wei Li, 2023. "Alternative polyadenylation transcriptome-wide association study identifies APA-linked susceptibility genes in brain disorders," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1000623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.