IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000001.html
   My bibliography  Save this article

Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A systematic review

Author

Listed:
  • Nao Aisu
  • Masahiro Miyake
  • Kohei Takeshita
  • Masato Akiyama
  • Ryo Kawasaki
  • Kenji Kashiwagi
  • Taiji Sakamoto
  • Tetsuro Oshika
  • Akitaka Tsujikawa

Abstract

Machine learning (ML) and deep learning (DL) are changing the world and reshaping the medical field. Thus, we conducted a systematic review to determine the status of regulatory-approved ML/DL-based medical devices in Japan, a leading stakeholder in international regulatory harmonization. Information about the medical devices were obtained from the Japan Association for the Advancement of Medical Equipment search service. The usage of ML/DL methodology in the medical devices was confirmed using public announcements or by contacting the marketing authorization holders via e-mail when the public announcements were insufficient for confirmation. Among the 114,150 medical devices found, 11 were regulatory-approved ML/DL-based Software as a Medical Device, with 6 products (54.5%) related to radiology and 5 products (45.5%) related to gastroenterology. The domestic ML/DL-based Software as a Medical Device were mostly related to health check-ups, which are common in Japan. Our review can help understanding the global overview that can foster international competitiveness and further tailored advancements.Author summary: Artificial Intelligence (AI), Machine learning (ML)/deep learning (DL) is in the early stages of its applications in the medical field. The current study, by investigating the state of regulatory-approved ML/DL-based medical devices in Japan, revealed that the clinical application of AI-based medical devices is closely related to society. It also emphasizes the need to understand the industrial demand, and sociocultural situation of each country, such as the state of health insurance, medical access, and health awareness, for global expansion of ML/DL-based medical devices. The study consists one of the two studies that revealed the approval status of AI-related medical devices among the leading members of international regulatory harmonization. Revealing the regulatory status of each country provides a global overview that can foster international competitiveness and further tailored advancements of ML/DL-based medical devices. Considering the current lack of relevant information about such devices, further studies revealing the status of regulatory-approved ML/DL-based medical devices are expected.

Suggested Citation

  • Nao Aisu & Masahiro Miyake & Kohei Takeshita & Masato Akiyama & Ryo Kawasaki & Kenji Kashiwagi & Taiji Sakamoto & Tetsuro Oshika & Akitaka Tsujikawa, 2022. "Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A systematic review," PLOS Digital Health, Public Library of Science, vol. 1(1), pages 1-12, January.
  • Handle: RePEc:plo:pdig00:0000001
    DOI: 10.1371/journal.pdig.0000001
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000001
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000001&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    4. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    5. Jungyoon Kim & Jihye Lim, 2021. "A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    6. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    8. Shang Li & Fei Yu & Shankou Zhang & Huige Yin & Hairong Lin, 2025. "Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
    9. Claus Zippel & Sabine Bohnet-Joschko, 2021. "Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    10. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    11. Jamil Ahmad & Abdul Khader Jilani Saudagar & Khalid Mahmood Malik & Waseem Ahmad & Muhammad Badruddin Khan & Mozaherul Hoque Abul Hasanat & Abdullah AlTameem & Mohammed AlKhathami & Muhammad Sajjad, 2022. "Disease Progression Detection via Deep Sequence Learning of Successive Radiographic Scans," IJERPH, MDPI, vol. 19(1), pages 1-16, January.
    12. Sarah Haggenmüller & Christoph Wies & Julia Abels & Jana T. Winterstein & Lukas Heinlein & Carina Nogueira Garcia & Jochen S. Utikal & Sebastian A. Wohlfeil & Friedegund Meier & Sarah Hobelsberger & F, 2025. "Discordance, accuracy and reproducibility study of pathologists’ diagnosis of melanoma and melanocytic tumors," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    13. Rasheed Omobolaji Alabi & Alhadi Almangush & Mohammed Elmusrati & Ilmo Leivo & Antti Mäkitie, 2022. "Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication," IJERPH, MDPI, vol. 19(14), pages 1-13, July.
    14. Arnesh Telukdarie & Logistic Makoni & R. Raghunatha Sarma & Megashnee Munsamy & Sunil Kumar, 2025. "System Models for Synchronous Strategies in Operational Healthcare Forecasting," IJERPH, MDPI, vol. 22(2), pages 1-30, February.
    15. Andreas Fügener & Jörn Grahl & Alok Gupta & Wolfgang Ketter, 2022. "Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation," Information Systems Research, INFORMS, vol. 33(2), pages 678-696, June.
    16. Vidhya V. & Anjan Gudigar & U. Raghavendra & Ajay Hegde & Girish R. Menon & Filippo Molinari & Edward J. Ciaccio & U. Rajendra Acharya, 2021. "Automated Detection and Screening of Traumatic Brain Injury (TBI) Using Computed Tomography Images: A Comprehensive Review and Future Perspectives," IJERPH, MDPI, vol. 18(12), pages 1-29, June.
    17. Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    18. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    19. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    20. Kai Feng & Han Hong & Ke Tang & Jingyuan Wang, 2023. "Statistical Tests for Replacing Human Decision Makers with Algorithms," Papers 2306.11689, arXiv.org, revised Dec 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.