IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008753.html
   My bibliography  Save this article

Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins

Author

Listed:
  • Rahmatullah Roche
  • Sutanu Bhattacharya
  • Debswapna Bhattacharya

Abstract

Crystallography and NMR system (CNS) is currently a widely used method for fragment-free ab initio protein folding from inter-residue distance or contact maps. Despite its widespread use in protein structure prediction, CNS is a decade-old macromolecular structure determination system that was originally developed for solving macromolecular geometry from experimental restraints as opposed to predictive modeling driven by interaction map data. As such, the adaptation of the CNS experimental structure determination protocol for ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of computational protein structure prediction. In this paper, we propose a new CNS-free hierarchical structure modeling method called DConStruct for folding both soluble and membrane proteins driven by distance and contact information. Rigorous experimental validation shows that DConStruct attains much better reconstruction accuracy than CNS when tested with the same input contact map at varying contact thresholds. The hierarchical modeling with iterative self-correction employed in DConStruct scales at a much higher degree of folding accuracy than CNS with the increase in contact thresholds, ultimately approaching near-optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy of DConStruct can be further improved by exploiting distance-based hybrid interaction maps at tri-level thresholding, as demonstrated by the better performance of our method in folding free modeling targets from the 12th and 13th rounds of the Critical Assessment of techniques for protein Structure Prediction (CASP) experiments compared to popular CNS- and fragment-based approaches and energy-minimization protocols, some of which even using much finer-grained distance maps than ours. Additional large-scale benchmarking shows that DConStruct can significantly improve the folding accuracy of membrane proteins compared to a CNS-based approach. These results collectively demonstrate the feasibility of greatly improving the accuracy of ab initio protein folding by optimally exploiting the information encoded in inter-residue interaction maps beyond what is possible by CNS.Author summary: Predicting the folded and functional 3-dimensional structure of a protein molecule from its amino acid sequence is of central importance to structural biology. Recently, promising advances have been made in ab initio protein folding due to the reasonably accurate estimation of inter-residue interaction maps at increasingly higher resolutions that range from binary contacts to finer-grained distances. Despite the progress in predicting the interaction maps, approaches for turning the residue-residue interactions projected in these maps into their precise spatial positioning heavily rely on a decade-old experimental structure determination protocol that is not suitable for predictive modeling. This paper presents a new hierarchical structure modeling method, DConStruct, which can better exploit the information encoded in the interaction maps at multiple granularities, from binary contact maps to distance-based hybrid maps at tri-level thresholding, for improved ab initio folding. Multiple large-scale benchmarking experiments show that our proposed method can substantially improve the folding accuracy for both soluble and membrane proteins compared to state-of-the-art approaches. DConStruct is licensed under the GNU General Public License v3 and freely available at https://github.com/Bhattacharya-Lab/DConStruct.

Suggested Citation

  • Rahmatullah Roche & Sutanu Bhattacharya & Debswapna Bhattacharya, 2021. "Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-31, February.
  • Handle: RePEc:plo:pcbi00:1008753
    DOI: 10.1371/journal.pcbi.1008753
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008753
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008753&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sheng Wang & Siqi Sun & Zhen Li & Renyu Zhang & Jinbo Xu, 2017. "Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-34, January.
    2. Joe G. Greener & Shaun M. Kandathil & David T. Jones, 2019. "Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Li & Chengxin Zhang & Eric W Bell & Wei Zheng & Xiaogen Zhou & Dong-Jun Yu & Yang Zhang, 2021. "Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    2. Rui Fa & Domenico Cozzetto & Cen Wan & David T Jones, 2018. "Predicting human protein function with multi-task deep neural networks," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    3. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Shuangxi Ji & Tuğçe Oruç & Liam Mead & Muhammad Fayyaz Rehman & Christopher Morton Thomas & Sam Butterworth & Peter James Winn, 2019. "DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    6. Juan A Morales-Cordovilla & Victoria Sanchez & Martin Ratajczak, 2018. "Protein alignment based on higher order conditional random fields for template-based modeling," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
    7. Shivangi & Laxman S Meena & Md Amjad Beg, 2018. "Insights of Rv2921c (Ftsy) Gene of Mycobacterium tuberculosis H37Rv To Prove Its Significance by Computational Approach," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(2), pages 9147-9157, December.
    8. Andrew J McGehee & Sutanu Bhattacharya & Rahmatullah Roche & Debswapna Bhattacharya, 2020. "PolyFold: An interactive visual simulator for distance-based protein folding," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-11, December.
    9. Lei Wang & Jiangguo Zhang & Dali Wang & Chen Song, 2022. "Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-27, March.
    10. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Claudio Mirabello & Björn Wallner, 2019. "rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.