Author
Listed:
- Peter D Tonner
- Cynthia L Darnell
- Francesca M L Bushell
- Peter A Lund
- Amy K Schmid
- Scott C Schmidler
Abstract
Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genetics, bioengineering, and food safety. Traditional parametric growth curve models capture the population growth behavior through a set of summarizing parameters. However, estimation of these parameters from data is confounded by random effects such as experimental variability, batch effects or differences in experimental material. A systematic statistical method to identify and correct for such confounding effects in population growth data is not currently available. Further, our previous work has demonstrated that parametric models are insufficient to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation. Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding effects on measured population growth.Author summary: Quantifying how microbes grow in response to stress is required for effective treatment of microbial infections, food safety, and understanding the effects of environmental change. Current models that quantify microbial growth characteristics such as exponential growth rate are based on assumptions that microbial growth curves will adopt a sigmoid form with characteristic lag, logarithmic, and stationary phases. These models are therefore inaccurate when applied to microbes growing under stress. Substantial variability across experiments that measure microbial growth further compounds the issue. Here we report a new statistical model freed from the assumption of optimum growth. This model also properly corrects for experimental variability, enabling researchers to monitor, quantify, and understand how microbial growth changes in response to gradations of stress. We apply this model to two microbial test systems to accurately quantify how pathogenic bacteria respond to acidic antimicrobial treatments, and how environmentally important microbes withstand stress.
Suggested Citation
Peter D Tonner & Cynthia L Darnell & Francesca M L Bushell & Peter A Lund & Amy K Schmid & Scott C Schmidler, 2020.
"A Bayesian non-parametric mixed-effects model of microbial growth curves,"
PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-21, October.
Handle:
RePEc:plo:pcbi00:1008366
DOI: 10.1371/journal.pcbi.1008366
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008366. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.