IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007925.html
   My bibliography  Save this article

Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers

Author

Listed:
  • Yu Hu
  • Kai Wang
  • Mingyao Li

Abstract

The emergence of single-cell RNA-seq (scRNA-seq) technology has made it possible to measure gene expression variations at cellular level. This breakthrough enables the investigation of a wider range of problems including analysis of splicing heterogeneity among individual cells. However, compared to bulk RNA-seq, scRNA-seq data are much noisier due to high technical variability and low sequencing depth. Here we propose SCATS (Single-Cell Analysis of Transcript Splicing) for differential splicing analysis in scRNA-seq, which achieves high sensitivity at low coverage by accounting for technical noise. SCATS models scRNA-seq data either with or without Unique Molecular Identifiers (UMIs). For non-UMI data, SCATS explicitly models technical noise by accounting for capture efficiency and amplification bias through the use of external spike-ins; for UMI data, SCATS models capture efficiency and further accounts for transcriptional burstiness. A key aspect of SCATS lies in its ability to group “exons” that originate from the same isoform(s). Grouping exons is essential in splicing analysis of scRNA-seq data as it naturally aggregates spliced reads across different exons, making it possible to detect splicing events even when sequencing depth is low. To evaluate the performance of SCATS, we analyzed both simulated and real scRNA-seq datasets and compared with existing methods including Census and DEXSeq. We show that SCATS has well controlled type I error rate, and is more powerful than existing methods, especially when splicing difference is small. In contrast, Census suffers from severe type I error inflation, whereas DEXSeq is more conservative. When applied to mouse brain scRNA-seq datasets, SCATS identified more differential splicing events with subtle difference across cell types compared to Census and DEXSeq. With the increasing adoption of scRNA-seq, we believe SCATS will be well-suited for various splicing studies. The implementation of SCATS can be downloaded from https://github.com/huyustats/SCATS.Author summary: Alternative splicing is a major mechanism for generating transcriptome diversity. However, few published scRNA-seq studies have investigated alternative splicing, and even when studied, methods developed for bulk RNA-seq were utilized. Compared to bulk RNA-seq, scRNA-seq data are much noisier due to high technical variability and low sequencing depth. Methods developed for bulk RNA-seq may not be optimal when analyzing data generated from scRNA-seq experiments. To fill in this gap, we developed SCATS, an open-source software package, which allows analysis of scRNA-seq data with or without Unique Molecular Identifiers (UMIs). SCATS is able to detect splicing events even when sequencing depth is low. When applied to mouse brain scRNA-seq datasets, SCATS identified more differential splicing events with subtle differences across cortical cell types than Census and DEXSeq. Additionally, SCATS accurately characterized splicing heterogeneity across cortical cell types, which was further confirmed by qRT-PCR measurements. Our study highlights the benefit of SCATS for elucidating splicing heterogeneity across cells in scRNA-seq data.

Suggested Citation

  • Yu Hu & Kai Wang & Mingyao Li, 2020. "Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-19, June.
  • Handle: RePEc:plo:pcbi00:1007925
    DOI: 10.1371/journal.pcbi.1007925
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007925
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007925&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grace X. Y. Zheng & Jessica M. Terry & Phillip Belgrader & Paul Ryvkin & Zachary W. Bent & Ryan Wilson & Solongo B. Ziraldo & Tobias D. Wheeler & Geoff P. McDermott & Junjie Zhu & Mark T. Gregory & Jo, 2017. "Massively parallel digital transcriptional profiling of single cells," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    2. Alex K. Shalek & Rahul Satija & Xian Adiconis & Rona S. Gertner & Jellert T. Gaublomme & Raktima Raychowdhury & Schraga Schwartz & Nir Yosef & Christine Malboeuf & Diana Lu & John J. Trombetta & Dave , 2013. "Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells," Nature, Nature, vol. 498(7453), pages 236-240, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvie Rato & Antonio Rausell & Miguel Muñoz & Amalio Telenti & Angela Ciuffi, 2017. "Single-cell analysis identifies cellular markers of the HIV permissive cell," PLOS Pathogens, Public Library of Science, vol. 13(10), pages 1-23, October.
    2. Rohith Palli & Mukta G Palshikar & Juilee Thakar, 2019. "Executable pathway analysis using ensemble discrete-state modeling for large-scale data," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-21, September.
    3. Marco Del Giudice & Stefano Bo & Silvia Grigolon & Carla Bosia, 2018. "On the role of extrinsic noise in microRNA-mediated bimodal gene expression," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-26, April.
    4. Yael Korem & Pablo Szekely & Yuval Hart & Hila Sheftel & Jean Hausser & Avi Mayo & Michael E Rothenberg & Tomer Kalisky & Uri Alon, 2015. "Geometry of the Gene Expression Space of Individual Cells," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-27, July.
    5. Snehalika Lall & Sumanta Ray & Sanghamitra Bandyopadhyay, 2022. "A copula based topology preserving graph convolution network for clustering of single-cell RNA-seq data," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-16, March.
    6. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Angélique Richard & Loïs Boullu & Ulysse Herbach & Arnaud Bonnafoux & Valérie Morin & Elodie Vallin & Anissa Guillemin & Nan Papili Gao & Rudiyanto Gunawan & Jérémie Cosette & Ophélie Arnaud & Jean-Ja, 2016. "Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process," PLOS Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    8. Qi Liu & Charles A Herring & Quanhu Sheng & Jie Ping & Alan J Simmons & Bob Chen & Amrita Banerjee & Wei Li & Guoqiang Gu & Robert J Coffey & Yu Shyr & Ken S Lau, 2018. "Quantitative assessment of cell population diversity in single-cell landscapes," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-29, October.
    9. Qunlun Shen & Shihua Zhang, 2021. "Approximate distance correlation for selecting highly interrelated genes across datasets," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-18, November.
    10. Chieh Lin & Jun Ding & Ziv Bar-Joseph, 2020. "Inferring TF activation order in time series scRNA-Seq studies," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-19, February.
    11. Andrew McDavid & Lucas Dennis & Patrick Danaher & Greg Finak & Michael Krouse & Alice Wang & Philippa Webster & Joseph Beechem & Raphael Gottardo, 2014. "Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-10, July.
    12. Angeles Arzalluz-Luque & Pedro Salguero & Sonia Tarazona & Ana Conesa, 2022. "acorde unravels functionally interpretable networks of isoform co-usage from single cell data," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Jinzhou Li & Marloes H. Maathuis, 2021. "GGM knockoff filter: False discovery rate control for Gaussian graphical models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 534-558, July.
    14. Ziye Xu & Tianyu Zhang & Hongyu Chen & Yuyi Zhu & Yuexiao Lv & Shunji Zhang & Jiaye Chen & Haide Chen & Lili Yang & Weiqin Jiang & Shengyu Ni & Fangru Lu & Zhaolun Wang & Hao Yang & Ling Dong & Feng C, 2023. "High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Lin Lin & Wei Shi & Jianbo Ye & Jia Li, 2023. "Multisource single‐cell data integration by MAW barycenter for Gaussian mixture models," Biometrics, The International Biometric Society, vol. 79(2), pages 866-877, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.