IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i3p534-558.html
   My bibliography  Save this article

GGM knockoff filter: False discovery rate control for Gaussian graphical models

Author

Listed:
  • Jinzhou Li
  • Marloes H. Maathuis

Abstract

We propose a new method to learn the structure of a Gaussian graphical model with finite sample false discovery rate control. Our method builds on the knockoff framework of Barber and Candès for linear models. We extend their approach to the graphical model setting by using a local (node‐based) and a global (graph‐based) step: we construct knockoffs and feature statistics for each node locally, and then solve a global optimization problem to determine a threshold for each node. We then estimate the neighbourhood of each node, by comparing its feature statistics to its threshold, resulting in our graph estimate. Our proposed method is very flexible, in the sense that there is freedom in the choice of knockoffs, feature statistics and the way in which the final graph estimate is obtained. For any given data set, it is not clear a priori what choices of these hyperparameters are optimal. We therefore use a sample‐splitting‐recycling procedure that first uses half of the samples to select the hyperparameters, and then learns the graph using all samples, in such a way that the finite sample FDR control still holds. We compare our method to several competitors in simulations and on a real data set.

Suggested Citation

  • Jinzhou Li & Marloes H. Maathuis, 2021. "GGM knockoff filter: False discovery rate control for Gaussian graphical models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 534-558, July.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:3:p:534-558
    DOI: 10.1111/rssb.12430
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12430
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grace X. Y. Zheng & Jessica M. Terry & Phillip Belgrader & Paul Ryvkin & Zachary W. Bent & Ryan Wilson & Solongo B. Ziraldo & Tobias D. Wheeler & Geoff P. McDermott & Junjie Zhu & Mark T. Gregory & Jo, 2017. "Massively parallel digital transcriptional profiling of single cells," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    2. John P A Ioannidis, 2005. "Why Most Published Research Findings Are False," PLOS Medicine, Public Library of Science, vol. 2(8), pages 1-1, August.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. P. Giudici & A. Spelta, 2016. "Graphical Network Models for International Financial Flows," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 128-138, January.
    5. C. Glenn Begley & Lee M. Ellis, 2012. "Raise standards for preclinical cancer research," Nature, Nature, vol. 483(7391), pages 531-533, March.
    6. Rong Zhang & Zhao Ren & Wei Chen, 2018. "SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-14, August.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Yingying Fan & Emre Demirkaya & Gaorong Li & Jinchi Lv, 2020. "RANK: Large-Scale Inference With Graphical Nonlinear Knockoffs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 362-379, January.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. Monya Baker, 2016. "1,500 scientists lift the lid on reproducibility," Nature, Nature, vol. 533(7604), pages 452-454, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baek, Seungchul & Hoyoung, Park & Park, Junyong, 2024. "Variable selection using data splitting and projection for principal fitted component models in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    2. Panxu Yuan & Yinfei Kong & Gaorong Li, 2024. "FDR control and power analysis for high-dimensional logistic regression via StabKoff," Statistical Papers, Springer, vol. 65(5), pages 2719-2749, July.
    3. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    5. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    6. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    7. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    8. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    9. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    10. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    11. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    12. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    13. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    14. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    15. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    17. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    18. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    19. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    20. Abhinav Kaushik & Diane Dunham & Xiaorui Han & Evan Do & Sandra Andorf & Sheena Gupta & Andrea Fernandes & Laurie Elizabeth Kost & Sayantani B. Sindher & Wong Yu & Mindy Tsai & Robert Tibshirani & Sco, 2022. "CD8+ T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:3:p:534-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.