Author
Abstract
Multiscale modelling of infectious disease systems falls within the domain of complexity science—the study of complex systems. However, what should be made clear is that current progress in multiscale modelling of infectious disease dynamics is still as yet insufficient to present it as a mature sub-discipline of complexity science. In this article we present a methodology for development of multiscale models of infectious disease systems. This methodology is a set of partially ordered research and development activities that result in multiscale models of infectious disease systems built from different scientific approaches. Therefore, the conclusive result of this article is a methodology to design multiscale models of infectious diseases. Although this research and development process for multiscale models cannot be claimed to be unique and final, it constitutes a good starting point, which may be found useful as a basis for further refinement in the discourse for multiscale modelling of infectious disease dynamics.Author summary: Complex systems such as infectious disease systems are inherently multilevel and multiscale systems. The study of such complex systems is called complexity science. In this article we present a methodology to design multiscale models of infectious disease systems from a complex systems perspective. Within this perspective we define complexity science as the study of the interconnected relationships of the levels and scales of organization of a complex system. We therefore, define the degree of complexity of a complex system as the number of levels and scales of organization of the complex system needed to describe it. In this work we first present a common multiscale vision of the multilevel and multiscale structure of infectious disease systems as complex systems in which the levels and scales of organization of an infectious disease system interact through different self-sustained multiscale cycles/loops (primary multiscale loops, or secondary multiscale loops, or tertiary multiscale loops) formed at different levels of organization of an infectious disease system due to ongoing reciprocal influence between the microscale and the macroscale. Guided by this multiscale vision, we propose a four-stage research and development process that result in multiscale models of infectious disease systems built from different scientific approaches.
Suggested Citation
Winston Garira, 2020.
"The research and development process for multiscale models of infectious disease systems,"
PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-39, April.
Handle:
RePEc:plo:pcbi00:1007734
DOI: 10.1371/journal.pcbi.1007734
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.