IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2635-d758023.html
   My bibliography  Save this article

Modeling COVID-19 Outbreaks in Long-Term Care Facilities Using an Agent-Based Modeling and Simulation Approach

Author

Listed:
  • Ali Asgary

    (Disaster and Emergency Management Area, School of Administrative Studies, York University, Toronto, ON M3J 1P3, Canada)

  • Hudson Blue

    (Disaster and Emergency Management Area, School of Administrative Studies, York University, Toronto, ON M3J 1P3, Canada)

  • Adriano O. Solis

    (Decision Sciences Area, School of Administrative Studies, York University, Toronto, ON M3J 1P3, Canada)

  • Zachary McCarthy

    (Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada)

  • Mahdi Najafabadi

    (Advanced Disaster, Emergency, and Rapid Response Simulation (ADERSIM), York University, Toronto, ON M3J 1P3, Canada)

  • Mohammad Ali Tofighi

    (Advanced Disaster, Emergency, and Rapid Response Simulation (ADERSIM), York University, Toronto, ON M3J 1P3, Canada)

  • Jianhong Wu

    (Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada)

Abstract

The elderly, especially those individuals with pre-existing health problems, have been disproportionally at a higher risk during the COVID-19 pandemic. Residents of long-term care facilities have been gravely affected by the pandemic and resident death numbers have been far above those of the general population. To better understand how infectious diseases such as COVID-19 can spread through long-term care facilities, we developed an agent-based simulation tool that uses a contact matrix adapted from previous infection control research in these types of facilities. This matrix accounts for the average distinct daily contacts between seven different agent types that represent the roles of individuals in long-term care facilities. The simulation results were compared to actual COVID-19 outbreaks in some of the long-term care facilities in Ontario, Canada. Our analysis shows that this simulation tool is capable of predicting the number of resident deaths after 50 days with a less than 0.1 variation in death rate. We modeled and predicted the effectiveness of infection control measures by utilizing this simulation tool. We found that to reduce the number of resident deaths, the effectiveness of personal protective equipment must be above 50%. We also found that daily random COVID-19 tests for as low as less than 10% of a long-term care facility’s population will reduce the number of resident deaths by over 75%. The results further show that combining several infection control measures will lead to more effective outcomes.

Suggested Citation

  • Ali Asgary & Hudson Blue & Adriano O. Solis & Zachary McCarthy & Mahdi Najafabadi & Mohammad Ali Tofighi & Jianhong Wu, 2022. "Modeling COVID-19 Outbreaks in Long-Term Care Facilities Using an Agent-Based Modeling and Simulation Approach," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2635-:d:758023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth Hunter & Brian Mac Namee & John Kelleher, 2018. "An open-data-driven agent-based model to simulate infectious disease outbreaks," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-35, December.
    2. Elizabeth Hunter & Brian Mac Namee & John D. Kelleher, 2017. "A Taxonomy for Agent-Based Models in Human Infectious Disease Epidemiology," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(3), pages 1-2.
    3. Mehdi Najafi & Marek Laskowski & Pieter T. de Boer & Evelyn Williams & Ayman Chit & Seyed M. Moghadas, 2017. "The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities," Medical Decision Making, , vol. 37(8), pages 871-881, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    2. Elizabeth Hunter & Brian Mac Namee & John D. Kelleher, 2020. "A Model for the Spread of Infectious Diseases in a Region," IJERPH, MDPI, vol. 17(9), pages 1-19, April.
    3. Constanza Fosco & Felipe Zurita, 2021. "Assessing the short-run effects of lockdown policies on economic activity, with an application to the Santiago Metropolitan Region, Chile," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-23, June.
    4. Jagoda Kaszowska-Mojsa & Przemyslaw Wlodarczyk, 2020. "To freeze or not to freeze? Epidemic prevention and control in the DSGE model with agent-based epidemic component," Lodz Economics Working Papers 3/2020, University of Lodz, Faculty of Economics and Sociology.
    5. Bisin, Alberto & Moro, Andrea, 2022. "JUE insight: Learning epidemiology by doing: The empirical implications of a Spatial-SIR model with behavioral responses," Journal of Urban Economics, Elsevier, vol. 127(C).
    6. Winston Garira & Kizito Muzhinji, 2023. "The Universal Theory for Multiscale Modelling of Infectious Disease Dynamics," Mathematics, MDPI, vol. 11(18), pages 1-40, September.
    7. Elizabeth Hunter & Brian Mac Namee & John Kelleher, 2018. "An open-data-driven agent-based model to simulate infectious disease outbreaks," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-35, December.
    8. Priscilla Avegliano & Jaime Simão Sichman, 2023. "Equation-Based Versus Agent-Based Models: Why Not Embrace Both for an Efficient Parameter Calibration?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(4), pages 1-3.
    9. Florian Miksch & Beate Jahn & Kurt Junshean Espinosa & Jagpreet Chhatwal & Uwe Siebert & Nikolas Popper, 2019. "Why should we apply ABM for decision analysis for infectious diseases?—An example for dengue interventions," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    10. Pilar Hernández & Carlos Pena & Alberto Ramos & Juan José Gómez-Cadenas, 2021. "A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    11. Beate Jahn & Sarah Friedrich & Joachim Behnke & Joachim Engel & Ursula Garczarek & Ralf Münnich & Markus Pauly & Adalbert Wilhelm & Olaf Wolkenhauer & Markus Zwick & Uwe Siebert & Tim Friede, 2022. "On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 349-382, September.
    12. Andrea Guazzini & Mirko Duradoni & Alessandro Lazzeri & Giorgio Gronchi, 2018. "Simulating the Cost of Cooperation: A Recipe for Collaborative Problem-Solving," Future Internet, MDPI, vol. 10(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2635-:d:758023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.