IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v2y2018i12d10.1038_s41562-018-0467-4.html
   My bibliography  Save this article

Generalization guides human exploration in vast decision spaces

Author

Listed:
  • Charley M. Wu

    (Max Planck Institute for Human Development)

  • Eric Schulz

    (Harvard University)

  • Maarten Speekenbrink

    (University College London)

  • Jonathan D. Nelson

    (University of Surrey
    MPRG iSearch, Max Planck Institute for Human Development)

  • Björn Meder

    (Max Planck Institute for Human Development
    MPRG iSearch, Max Planck Institute for Human Development)

Abstract

From foraging for food to learning complex games, many aspects of human behaviour can be framed as a search problem with a vast space of possible actions. Under finite search horizons, optimal solutions are generally unobtainable. Yet, how do humans navigate vast problem spaces, which require intelligent exploration of unobserved actions? Using various bandit tasks with up to 121 arms, we study how humans search for rewards under limited search horizons, in which the spatial correlation of rewards (in both generated and natural environments) provides traction for generalization. Across various different probabilistic and heuristic models, we find evidence that Gaussian process function learning—combined with an optimistic upper confidence bound sampling strategy—provides a robust account of how people use generalization to guide search. Our modelling results and parameter estimates are recoverable and can be used to simulate human-like performance, providing insights about human behaviour in complex environments.

Suggested Citation

  • Charley M. Wu & Eric Schulz & Maarten Speekenbrink & Jonathan D. Nelson & Björn Meder, 2018. "Generalization guides human exploration in vast decision spaces," Nature Human Behaviour, Nature, vol. 2(12), pages 915-924, December.
  • Handle: RePEc:nat:nathum:v:2:y:2018:i:12:d:10.1038_s41562-018-0467-4
    DOI: 10.1038/s41562-018-0467-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-018-0467-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-018-0467-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janet M. Currie & W. Bentley MacLeod, 2020. "Understanding Doctor Decision Making: The Case of Depression Treatment," Econometrica, Econometric Society, vol. 88(3), pages 847-878, May.
    2. Magda Dubois & Tobias U. Hauser, 2022. "Value-free random exploration is linked to impulsivity," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Atsushi Ueshima & Matthew I. Jones & Nicholas A. Christakis, 2024. "Simple autonomous agents can enhance creative semantic discovery by human groups," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Simon Ciranka & Juan Linde-Domingo & Ivan Padezhki & Clara Wicharz & Charley M. Wu & Bernhard Spitzer, 2022. "Asymmetric reinforcement learning facilitates human inference of transitive relations," Nature Human Behaviour, Nature, vol. 6(4), pages 555-564, April.
    5. Farid Anvari & Stephan Billinger & Pantelis P. Analytis & Vithor Rosa Franco & Davide Marchiori, 2024. "Testing the convergent validity, domain generality, and temporal stability of selected measures of people’s tendency to explore," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Janet M. Currie & W. Bentley MacLeod, 2018. "Understanding Doctor Decision Making: The Case of Depression," NBER Working Papers 24955, National Bureau of Economic Research, Inc.
    7. Olschewski, Sebastian & Diao, Linan & Rieskamp, Jörg, 2021. "Reinforcement learning about asset variability and correlation in repeated portfolio decisions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    8. Momchil S Tomov & Samyukta Yagati & Agni Kumar & Wanqian Yang & Samuel J Gershman, 2020. "Discovery of hierarchical representations for efficient planning," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-42, April.
    9. Shinji Nakazato & Bojian Yang & Tetsuya Shimokawa, 2024. "Analyzing Human Search Behavior When Subjective Returns are Unobservable," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1921-1947, May.
    10. Aparajithan Venkateswaran & Jishnu Das & Tyler H. McCormick, 2023. "Feasible contact tracing," Papers 2312.05718, arXiv.org.
    11. Bonan Zhao & Christopher G. Lucas & Neil R. Bramley, 2024. "A model of conceptual bootstrapping in human cognition," Nature Human Behaviour, Nature, vol. 8(1), pages 125-136, January.
    12. Anna P. Giron & Simon Ciranka & Eric Schulz & Wouter Bos & Azzurra Ruggeri & Björn Meder & Charley M. Wu, 2023. "Developmental changes in exploration resemble stochastic optimization," Nature Human Behaviour, Nature, vol. 7(11), pages 1955-1967, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:2:y:2018:i:12:d:10.1038_s41562-018-0467-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.