IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007451.html
   My bibliography  Save this article

Uncovering the subtype-specific temporal order of cancer pathway dysregulation

Author

Listed:
  • Sahand Khakabimamaghani
  • Dujian Ding
  • Oliver Snow
  • Martin Ester

Abstract

Cancer is driven by genetic mutations that dysregulate pathways important for proper cell function. Therefore, discovering these cancer pathways and their dysregulation order is key to understanding and treating cancer. However, the heterogeneity of mutations between different individuals makes this challenging and requires that cancer progression is studied in a subtype-specific way. To address this challenge, we provide a mathematical model, called Subtype-specific Pathway Linear Progression Model (SPM), that simultaneously captures cancer subtypes and pathways and order of dysregulation of the pathways within each subtype. Experiments with synthetic data indicate the robustness of SPM to problem specifics including noise compared to an existing method. Moreover, experimental results on glioblastoma multiforme and colorectal adenocarcinoma show the consistency of SPM’s results with the existing knowledge and its superiority to an existing method in certain cases. The implementation of our method is available at https://github.com/Dalton386/SPM.Author summary: Different biological processes within a cell are performed through biological pathways. A biological pathway consists of a group of proteins and other molecules and complex interactions between them. It is known that cancer arises due to malfunction, also known as dysregulation, of one or more pathways. Interestingly, a dysregulation in a patient is often caused by mutations in only one (and not more) molecule in the pathway. This phenomenon is known as mutual exclusivity of mutations and can be used for identification of groups of genes forming (cancer) pathways. The same type of cancer in different patients can result due to different trajectories of dysregulations in possibly different pathways resulting in cancer heterogeneity. Cancer heterogeneity implies that cancer treatment should be personalized according to each patient’s specific characteristics and mutations. Therefore, grouping patients based on their pathway dysregulation trajectories into cancer subtypes can help identify different cancer mechanisms, inform subtype-specific treatment strategies and improve efficacy. In this paper, we provide a method that uses patients’ mutation information captured by DNA sequencing and identifies dysregulated pathways (i.e. molecules involved in each cancer pathway), cancer subtypes (i.e. groups of patients sharing a common pathway dysregulation trajectory) and subtype-specific pathway dysregulation orders (i.e. trajectories defining the different subtypes). The results on synthetic and real-world data indicate that the method can recover meaningful information about the progression of cancer in different groups of patients.

Suggested Citation

  • Sahand Khakabimamaghani & Dujian Ding & Oliver Snow & Martin Ester, 2019. "Uncovering the subtype-specific temporal order of cancer pathway dysregulation," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
  • Handle: RePEc:plo:pcbi00:1007451
    DOI: 10.1371/journal.pcbi.1007451
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007451
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007451&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hossein Shahrabi Farahani & Jens Lagergren, 2013. "Learning Oncogenetic Networks by Reducing to Mixed Integer Linear Programming," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    2. N. Beerenwinkel & S. Sullivant, 2009. "Markov models for accumulating mutations," Biometrika, Biometrika Trust, vol. 96(3), pages 645-661.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Ge Luo & Jack Kuipers & Niko Beerenwinkel, 2023. "Joint inference of exclusivity patterns and recurrent trajectories from tumor mutation trees," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Beerenwinkel Niko & Knupfer Patrick & Tresch Achim, 2011. "Learning Monotonic Genotype-Phenotype Maps," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, January.
    3. Moritz Gerstung & Niko Beerenwinkel, 2010. "Waiting Time Models of Cancer Progression," Mathematical Population Studies, Taylor & Francis Journals, vol. 17(3), pages 115-135.
    4. Mohammadreza Mohaghegh Neyshabouri & Seong-Hwan Jun & Jens Lagergren, 2020. "Inferring tumor progression in large datasets," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-16, October.
    5. Salim Akhter Chowdhury & Stanley E Shackney & Kerstin Heselmeyer-Haddad & Thomas Ried & Alejandro A Schäffer & Russell Schwartz, 2014. "Algorithms to Model Single Gene, Single Chromosome, and Whole Genome Copy Number Changes Jointly in Tumor Phylogenetics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-19, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.