IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003740.html
   My bibliography  Save this article

Algorithms to Model Single Gene, Single Chromosome, and Whole Genome Copy Number Changes Jointly in Tumor Phylogenetics

Author

Listed:
  • Salim Akhter Chowdhury
  • Stanley E Shackney
  • Kerstin Heselmeyer-Haddad
  • Thomas Ried
  • Alejandro A Schäffer
  • Russell Schwartz

Abstract

We present methods to construct phylogenetic models of tumor progression at the cellular level that include copy number changes at the scale of single genes, entire chromosomes, and the whole genome. The methods are designed for data collected by fluorescence in situ hybridization (FISH), an experimental technique especially well suited to characterizing intratumor heterogeneity using counts of probes to genetic regions frequently gained or lost in tumor development. Here, we develop new provably optimal methods for computing an edit distance between the copy number states of two cells given evolution by copy number changes of single probes, all probes on a chromosome, or all probes in the genome. We then apply this theory to develop a practical heuristic algorithm, implemented in publicly available software, for inferring tumor phylogenies on data from potentially hundreds of single cells by this evolutionary model. We demonstrate and validate the methods on simulated data and published FISH data from cervical cancers and breast cancers. Our computational experiments show that the new model and algorithm lead to more parsimonious trees than prior methods for single-tumor phylogenetics and to improved performance on various classification tasks, such as distinguishing primary tumors from metastases obtained from the same patient population.Author Summary: Cancer is an evolutionary system whose growth and development is attributed to aberrations in well-known genes and to cancer-type specific genomic imbalances. Here, we present methods for reconstructing the evolution of individual tumors based on cell-to-cell variations between copy numbers of targeted regions of the genome. The methods are designed to work with fluorescence in situ hybridization (FISH), a technique that allows one to profile copy number changes in potentially thousands of single cells per study. Our work advances the prior art by developing theory and practical algorithms for building evolutionary trees of single tumors that can model gain or loss of genetic regions at the scale of single genes, whole chromosomes, or the entire genome, all common events in tumor evolution. We apply these methods on simulated and real tumor data to demonstrate substantial improvements in tree-building accuracy and in our ability to accurately classify tumors from their inferred evolutionary models. The newly developed algorithms have been released through our publicly available software, FISHtrees.

Suggested Citation

  • Salim Akhter Chowdhury & Stanley E Shackney & Kerstin Heselmeyer-Haddad & Thomas Ried & Alejandro A Schäffer & Russell Schwartz, 2014. "Algorithms to Model Single Gene, Single Chromosome, and Whole Genome Copy Number Changes Jointly in Tumor Phylogenetics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-19, July.
  • Handle: RePEc:plo:pcbi00:1003740
    DOI: 10.1371/journal.pcbi.1003740
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003740
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003740&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Navin & Jude Kendall & Jennifer Troge & Peter Andrews & Linda Rodgers & Jeanne McIndoo & Kerry Cook & Asya Stepansky & Dan Levy & Diane Esposito & Lakshmi Muthuswamy & Alex Krasnitz & W. Rich, 2011. "Tumour evolution inferred by single-cell sequencing," Nature, Nature, vol. 472(7341), pages 90-94, April.
    2. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    3. Hossein Shahrabi Farahani & Jens Lagergren, 2013. "Learning Oncogenetic Networks by Reducing to Mixed Integer Linear Programming," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2024. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," CESifo Working Paper Series 11120, CESifo.
    3. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    4. Weihua Yang & Xu Zhang & Xia Wang, 2024. "The Wasserstein Metric between a Discrete Probability Measure and a Continuous One," Mathematics, MDPI, vol. 12(15), pages 1-13, July.
    5. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    6. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    7. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    8. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    9. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    10. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    11. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    12. Adam C. Weiner & Marc J. Williams & Hongyu Shi & Ignacio Vázquez-García & Sohrab Salehi & Nicole Rusk & Samuel Aparicio & Sohrab P. Shah & Andrew McPherson, 2024. "Inferring replication timing and proliferation dynamics from single-cell DNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    13. Robert M. Curry & Joseph Foraker & Gary Lazzaro & David M. Ruth, 2024. "Practice Summary: Optimal Student Group Reassignment at U.S. Naval Academy," Interfaces, INFORMS, vol. 54(3), pages 205-210, May.
    14. Aidin Rezaeian & Hamidreza Koosha & Mohammad Ranjbar & Saeed Poormoaied, 2024. "The assignment of project managers to projects in an uncertain dynamic environment," Annals of Operations Research, Springer, vol. 341(2), pages 1107-1134, October.
    15. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    16. Delafield, Gemma & Smith, Greg S. & Day, Brett & Holland, Robert A. & Donnison, Caspar & Hastings, Astley & Taylor, Gail & Owen, Nathan & Lovett, Andrew, 2024. "Spatial context matters: Assessing how future renewable energy pathways will impact nature and society," Renewable Energy, Elsevier, vol. 220(C).
    17. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.
    18. Caplin, Andrew & Leahy, John, 2020. "Comparative statics in markets for indivisible goods," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 80-94.
    19. Jinhyun Kim & Sungsik Kim & Huiran Yeom & Seo Woo Song & Kyoungseob Shin & Sangwook Bae & Han Suk Ryu & Ji Young Kim & Ahyoun Choi & Sumin Lee & Taehoon Ryu & Yeongjae Choi & Hamin Kim & Okju Kim & Yu, 2023. "Barcoded multiple displacement amplification for high coverage sequencing in spatial genomics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Biró, Péter & Gudmundsson, Jens, 2021. "Complexity of finding Pareto-efficient allocations of highest welfare," European Journal of Operational Research, Elsevier, vol. 291(2), pages 614-628.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.