IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006943.html
   My bibliography  Save this article

Isolating and quantifying the role of developmental noise in generating phenotypic variation

Author

Listed:
  • Maria Kiskowski
  • Tilmann Glimm
  • Nickolas Moreno
  • Tony Gamble
  • Ylenia Chiari

Abstract

Genotypic variation, environmental variation, and their interaction may produce variation in the developmental process and cause phenotypic differences among individuals. Developmental noise, which arises during development from stochasticity in cellular and molecular processes when genotype and environment are fixed, also contributes to phenotypic variation. While evolutionary biology has long focused on teasing apart the relative contribution of genes and environment to phenotypic variation, our understanding of the role of developmental noise has lagged due to technical difficulties in directly measuring the contribution of developmental noise. The influence of developmental noise is likely underestimated in studies of phenotypic variation due to intrinsic mechanisms within organisms that stabilize phenotypes and decrease variation. Since we are just beginning to appreciate the extent to which phenotypic variation due to stochasticity is potentially adaptive, the contribution of developmental noise to phenotypic variation must be separated and measured to fully understand its role in evolution. Here, we show that variation in the component of the developmental process corresponding to environmental and genetic factors (here treated together as a unit called the LALI-type) versus the contribution of developmental noise, can be distinguished for leopard gecko (Eublepharis macularius) head color patterns using mathematical simulations that model the role of random variation (corresponding to developmental noise) in patterning. Specifically, we modified the parameters of simulations corresponding to variation in the LALI-type to generate the full range of phenotypic variation in color pattern seen on the heads of eight leopard geckos. We observed that over the range of these parameters, variation in color pattern due to LALI-type variation exceeds that due to developmental noise in the studied gecko cohort. However, the effect of developmental noise on patterning is also substantial. Our approach addresses one of the major goals of evolutionary biology: to quantify the role of stochasticity in shaping phenotypic variation.Author summary: The observable characteristics of an organism make up its phenotype. Variation among phenotypes is due to genetic differences, environmental factors and developmental noise (effects due to inherent stochasticity) during development. We used mathematical models to investigate the contributions of variation of the developmental process due to genetic and environmental factors (treated in this work as a single unit) versus developmental noise (unavoidable variation within the developmental program) to the development of pigment patterns on gecko heads. We found that for our cohort, the proportion of phenotypic variation due to variation in the unit composed of genotypic and environmental variation is larger than that due to developmental noise. Furthermore, by allowing the parameters of the mathematical model to vary, we generated the full extent of potential phenotypic pattern variation that could occur on the head of geckos. This serves to further study the influence of the buffering mechanisms (canalization, selection, and developmental stability) limiting phenotypic variation. This approach can be applied to any regular morphological trait that results from self-organized processes such as reaction-diffusion mechanisms, including the frequently found striped and spotted patterns of animal pigmentation patterning, patterning of bones in vertebrate limbs, and body segmentation in segmented animals.

Suggested Citation

  • Maria Kiskowski & Tilmann Glimm & Nickolas Moreno & Tony Gamble & Ylenia Chiari, 2019. "Isolating and quantifying the role of developmental noise in generating phenotypic variation," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-31, April.
  • Handle: RePEc:plo:pcbi00:1006943
    DOI: 10.1371/journal.pcbi.1006943
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006943
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006943&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.