IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006786.html
   My bibliography  Save this article

Spatial clustering and common regulatory elements correlate with coordinated gene expression

Author

Listed:
  • Jingyu Zhang
  • Hengyu Chen
  • Ruoyan Li
  • David A Taft
  • Guang Yao
  • Fan Bai
  • Jianhua Xing

Abstract

Many cellular responses to surrounding cues require temporally concerted transcriptional regulation of multiple genes. In prokaryotic cells, a single-input-module motif with one transcription factor regulating multiple target genes can generate coordinated gene expression. In eukaryotic cells, transcriptional activity of a gene is affected by not only transcription factors but also the epigenetic modifications and three-dimensional chromosome structure of the gene. To examine how local gene environment and transcription factor regulation are coupled, we performed a combined analysis of time-course RNA-seq data of TGF-β treated MCF10A cells and related epigenomic and Hi-C data. Using Dynamic Regulatory Events Miner (DREM), we clustered differentially expressed genes based on gene expression profiles and associated transcription factors. Genes in each class have similar temporal gene expression patterns and share common transcription factors. Next, we defined a set of linear and radial distribution functions, as used in statistical physics, to measure the distributions of genes within a class both spatially and linearly along the genomic sequence. Remarkably, genes within the same class despite sometimes being separated by tens of million bases (Mb) along genomic sequence show a significantly higher tendency to be spatially close despite sometimes being separated by tens of Mb along the genomic sequence than those belonging to different classes do. Analyses extended to the process of mouse nervous system development arrived at similar conclusions. Future studies will be able to test whether this spatial organization of chromosomes contributes to concerted gene expression.Author summary: Cellular responses to environmental stimulation are often accompanied by changes in gene expression patterns. Genes are linearly arranged along chromosomal DNA, which folds into a three-dimensional structure. The chromosome structure affects gene expression activities and is regulated by multiple events such as histone modifications and DNA binding of transcription factors. A basic question is how these mechanisms work together to regulate gene expression. In this study, we analyzed temporal gene expression patterns in the context of chromosome structure both in a human cell line under TGF-β treatment and during mouse nervous system development. In both cases, we observed that genes regulated by common transcription factors have an enhanced tendency to be spatially close. Our analysis suggests that spatial co-localization of genes may facilitate the concerted gene expression.

Suggested Citation

  • Jingyu Zhang & Hengyu Chen & Ruoyan Li & David A Taft & Guang Yao & Fan Bai & Jianhua Xing, 2019. "Spatial clustering and common regulatory elements correlate with coordinated gene expression," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-16, March.
  • Handle: RePEc:plo:pcbi00:1006786
    DOI: 10.1371/journal.pcbi.1006786
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006786
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006786&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Gaspard & Tristan Bouschet & Raphael Hourez & Jordane Dimidschstein & Gilles Naeije & Jelle van den Ameele & Ira Espuny-Camacho & Adèle Herpoel & Lara Passante & Serge N. Schiffmann & Afsaneh , 2008. "An intrinsic mechanism of corticogenesis from embryonic stem cells," Nature, Nature, vol. 455(7211), pages 351-357, September.
    2. Barbara Treutlein & Doug G. Brownfield & Angela R. Wu & Norma F. Neff & Gary L. Mantalas & F. Hernan Espinoza & Tushar J. Desai & Mark A. Krasnow & Stephen R. Quake, 2014. "Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq," Nature, Nature, vol. 509(7500), pages 371-375, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabrielle A. Dotson & Can Chen & Stephen Lindsly & Anthony Cicalo & Sam Dilworth & Charles Ryan & Sivakumar Jeyarajan & Walter Meixner & Cooper Stansbury & Joshua Pickard & Nicholas Beckloff & Amit Su, 2022. "Deciphering multi-way interactions in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael J. Geuenich & Dae-won Gong & Kieran R. Campbell, 2024. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ming-Wen Hu & Dong Won Kim & Sheng Liu & Donald J Zack & Seth Blackshaw & Jiang Qian, 2019. "PanoView: An iterative clustering method for single-cell RNA sequencing data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-17, August.
    3. Cornelia Fuetterer & Thomas Augustin & Christiane Fuchs, 2020. "Adapted single-cell consensus clustering (adaSC3)," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 885-896, December.
    4. Ran Wang & Xianfa Yang & Jiehui Chen & Lin Zhang & Jonathan A. Griffiths & Guizhong Cui & Yingying Chen & Yun Qian & Guangdun Peng & Jinsong Li & Liantang Wang & John C. Marioni & Patrick P. L. Tam & , 2023. "Time space and single-cell resolved tissue lineage trajectories and laterality of body plan at gastrulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Kieran R Campbell & Christopher Yau, 2016. "Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-20, November.
    6. Zhoufeng Wang & Zhe Li & Kun Zhou & Chengdi Wang & Lili Jiang & Li Zhang & Ying Yang & Wenxin Luo & Wenliang Qiao & Gang Wang & Yinyun Ni & Shuiping Dai & Tingting Guo & Guiyi Ji & Minjie Xu & Yiying , 2021. "Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Bobby Ranjan & Wenjie Sun & Jinyu Park & Kunal Mishra & Florian Schmidt & Ronald Xie & Fatemeh Alipour & Vipul Singhal & Ignasius Joanito & Mohammad Amin Honardoost & Jacy Mei Yun Yong & Ee Tzun Koh &, 2021. "DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Qi Liu & Charles A Herring & Quanhu Sheng & Jie Ping & Alan J Simmons & Bob Chen & Amrita Banerjee & Wei Li & Guoqiang Gu & Robert J Coffey & Yu Shyr & Ken S Lau, 2018. "Quantitative assessment of cell population diversity in single-cell landscapes," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-29, October.
    10. Nevin Witman & Chikai Zhou & Timm Häneke & Yao Xiao & Xiaoting Huang & Eduarde Rohner & Jesper Sohlmér & Niels Grote Beverborg & Miia L. Lehtinen & Kenneth R. Chien & Makoto Sahara, 2023. "Placental growth factor exerts a dual function for cardiomyogenesis and vasculogenesis during heart development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Dalia Hassan & Jichao Chen, 2024. "CEBPA restricts alveolar type 2 cell plasticity during development and injury-repair," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Balazs V. Varga & Maryam Faiz & Helena Pivonkova & Gabriel Khelifi & Huijuan Yang & Shangbang Gao & Emma Linderoth & Mei Zhen & Ragnhildur Thora Karadottir & Samer M. Hussein & Andras Nagy, 2022. "Signal requirement for cortical potential of transplantable human neuroepithelial stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Ruihua Zhang & Qun Liu & Shanshan Pan & Yingying Zhang & Yating Qin & Xiao Du & Zengbao Yuan & Yongrui Lu & Yue Song & Mengqi Zhang & Nannan Zhang & Jie Ma & Zhe Zhang & Xiaodong Jia & Kun Wang & Shun, 2023. "A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Yongcheng Jin & Ellina Mikhailova & Ming Lei & Sally A. Cowley & Tianyi Sun & Xingyun Yang & Yujia Zhang & Kaili Liu & Daniel Catarino da Silva & Luana Campos Soares & Sara Bandiera & Francis G. Szele, 2023. "Integration of 3D-printed cerebral cortical tissue into an ex vivo lesioned brain slice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Minzhe Guo & Michael P. Morley & Cheng Jiang & Yixin Wu & Guangyuan Li & Yina Du & Shuyang Zhao & Andrew Wagner & Adnan Cihan Cakar & Michal Kouril & Kang Jin & Nathan Gaddis & Joseph A. Kitzmiller & , 2023. "Guided construction of single cell reference for human and mouse lung," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Francisco X. Galdos & Sidra Xu & William R. Goodyer & Lauren Duan & Yuhsin V. Huang & Soah Lee & Han Zhu & Carissa Lee & Nicholas Wei & Daniel Lee & Sean M. Wu, 2022. "devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    17. Chieh Lin & Jun Ding & Ziv Bar-Joseph, 2020. "Inferring TF activation order in time series scRNA-Seq studies," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-19, February.
    18. Angeles Arzalluz-Luque & Pedro Salguero & Sonia Tarazona & Ana Conesa, 2022. "acorde unravels functionally interpretable networks of isoform co-usage from single cell data," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Christopher W. Murray & Jennifer J. Brady & Mingqi Han & Hongchen Cai & Min K. Tsai & Sarah E. Pierce & Ran Cheng & Janos Demeter & David M. Feldser & Peter K. Jackson & David B. Shackelford & Monte M, 2022. "LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Douglas G. Brownfield & Alex Diaz Arce & Elisa Ghelfi & Astrid Gillich & Tushar J. Desai & Mark A. Krasnow, 2022. "Alveolar cell fate selection and lifelong maintenance of AT2 cells by FGF signaling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.