IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006577.html
   My bibliography  Save this article

Agent-based modeling of morphogenetic systems: Advantages and challenges

Author

Listed:
  • Chad M Glen
  • Melissa L Kemp
  • Eberhard O Voit

Abstract

The complexity of morphogenesis poses a fundamental challenge to understanding the mechanisms governing the formation of biological patterns and structures. Over the past century, numerous processes have been identified as critically contributing to morphogenetic events, but the interplay between the various components and aspects of pattern formation have been much harder to grasp. The combination of traditional biology with mathematical and computational methods has had a profound effect on our current understanding of morphogenesis and led to significant insights and advancements in the field. In particular, the theoretical concepts of reaction–diffusion systems and positional information, proposed by Alan Turing and Lewis Wolpert, respectively, dramatically influenced our general view of morphogenesis, although typically in isolation from one another. In recent years, agent-based modeling has been emerging as a consolidation and implementation of the two theories within a single framework. Agent-based models (ABMs) are unique in their ability to integrate combinations of heterogeneous processes and investigate their respective dynamics, especially in the context of spatial phenomena. In this review, we highlight the benefits and technical challenges associated with ABMs as tools for examining morphogenetic events. These models display unparalleled flexibility for studying various morphogenetic phenomena at multiple levels and have the important advantage of informing future experimental work, including the targeted engineering of tissues and organs.

Suggested Citation

  • Chad M Glen & Melissa L Kemp & Eberhard O Voit, 2019. "Agent-based modeling of morphogenetic systems: Advantages and challenges," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-31, March.
  • Handle: RePEc:plo:pcbi00:1006577
    DOI: 10.1371/journal.pcbi.1006577
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006577
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006577&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Tracy, 2014. "Paradox Lost: The Evolution of Strategies in Selten’s Chain Store Game," Computational Economics, Springer;Society for Computational Economics, vol. 43(1), pages 83-103, January.
    2. Kollman, Ken & Miller, John H. & Page, Scott E., 1997. "Landscape formation in a spatial voting model," Economics Letters, Elsevier, vol. 55(1), pages 121-130, August.
    3. Ho, Teck-Hua, 1996. "Finite automata play repeated prisoner's dilemma with information processing costs," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 173-207.
    4. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    5. Benoît Desmarchelier & Faridah Djellal & Faïz Gallouj, 2018. "Public Service Innovation Networks (PSINs): Collaborating for Innovation and Value Creation," Working Papers halshs-01934275, HAL.
    6. Kenneth Button & Brien Benson, 2013. "Handling biases in forecasting when making transportation policy," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 4, pages 49-67, Edward Elgar Publishing.
    7. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    8. Ian McCarthy, 2008. "Simulating Sequential Search Models with Genetic Algorithms: Analysis of Price Ceilings, Taxes, Advertising and Welfare," CAEPR Working Papers 2008-010, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    9. Tamotsu Onozaki, 2018. "Nonlinearity, Bounded Rationality, and Heterogeneity," Springer Books, Springer, number 978-4-431-54971-0, December.
    10. David Pearce, 1994. "Complexity Theory and Economics," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 1(1), pages 101-106.
    11. Alexander Gorobets & Bart Nooteboom, 2006. "Adaptive Build-up and Breakdown of Trust: An Agent Based Computational Approach," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 10(3), pages 277-306, September.
    12. Benoît Desmarchelier & Faridah Djellal & Faïz Gallouj, 2019. "Users' Involvement in Value Co‐Creation: The More the Better?," Post-Print hal-02354136, HAL.
    13. Tay, Nicholas S.P. & Lusch, Robert F., 2005. "A preliminary test of Hunt's General Theory of Competition: using artificial adaptive agents to study complex and ill-defined environments," Journal of Business Research, Elsevier, vol. 58(9), pages 1155-1168, September.
    14. Beltrametti, Luca & Fiorentini, Riccardo & Marengo, Luigi & Tamborini, Roberto, 1997. "A learning-to-forecast experiment on the foreign exchange market with a classifier system," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1543-1575, June.
    15. Tesfatsion, Leigh, 1998. "Teaching Agent-Based Computational Economics To Graduate Students," Economic Reports 18193, Iowa State University, Department of Economics.
    16. Leigh TESFATSION, 1995. "How Economists Can Get Alife," Economic Report 37, Iowa State University Department of Economics.
    17. Ricardo Ruiz & Bernardo Alves Furtado, 2007. "An Agent Based Model for Urban Structure: the case of Belo Horizonte - Brazil," EcoMod2007 23900079, EcoMod.
    18. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    19. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    20. Fontana, Magda, 2010. "Can neoclassical economics handle complexity? The fallacy of the oil spot dynamic," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 584-596, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.