IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v98y2016icp60-70.html
   My bibliography  Save this article

A powerful FDR control procedure for multiple hypotheses

Author

Listed:
  • Zhao, Haibing
  • Fung, Wing Kam

Abstract

A powerful test procedure is proposed for multiple hypotheses for the false discovery rate (FDR) control. The proposed procedure is a weighted p-value procedure which explores false null hypotheses information. It is theoretically shown to control the FDR and be more powerful than the widely used plug-in BH procedure. When there are unknown parameters estimated from the data, the asymptotic properties of the proposed procedure are discussed. The extensive simulation studies further verify the theoretical results. A real data is analyzed to illustrate the proposed method.

Suggested Citation

  • Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
  • Handle: RePEc:eee:csdana:v:98:y:2016:i:c:p:60-70
    DOI: 10.1016/j.csda.2015.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315003217
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoav Benjamini & Abba M. Krieger & Daniel Yekutieli, 2006. "Adaptive linear step-up procedures that control the false discovery rate," Biometrika, Biometrika Trust, vol. 93(3), pages 491-507, September.
    2. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    3. Hu, James X. & Zhao, Hongyu & Zhou, Harrison H., 2010. "False Discovery Rate Control With Groups," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1215-1227.
    4. Wenguang Sun & Alexander C. McLain, 2012. "Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 673-687, June.
    5. Sun, Wenguang & Wei, Zhi, 2011. "Multiple Testing for Pattern Identification, With Applications to Microarray Time-Course Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 73-88.
    6. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    7. Cai, T. Tony & Sun, Wenguang, 2009. "Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1467-1481.
    8. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    9. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    10. Christopher R. Genovese & Kathryn Roeder & Larry Wasserman, 2006. "False discovery control with p-value weighting," Biometrika, Biometrika Trust, vol. 93(3), pages 509-524, September.
    11. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    12. Wenge Guo, 2009. "A note on adaptive Bonferroni and Holm procedures under dependence," Biometrika, Biometrika Trust, vol. 96(4), pages 1012-1018.
    13. Jin, Jiashun & Cai, T. Tony, 2007. "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 495-506, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoyang Tian & Kun Liang & Pengfei Li, 2021. "A powerful procedure that controls the false discovery rate with directional information," Biometrics, The International Biometric Society, vol. 77(1), pages 212-222, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    2. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    3. Haibing Zhao & Xinping Cui, 2020. "Constructing confidence intervals for selected parameters," Biometrics, The International Biometric Society, vol. 76(4), pages 1098-1108, December.
    4. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    5. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    6. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    7. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    8. Zhao, Haibing, 2014. "Adaptive FWER control procedure for grouped hypotheses," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 63-70.
    9. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    10. Li Wang, 2019. "Weighted multiple testing procedure for grouped hypotheses with k-FWER control," Computational Statistics, Springer, vol. 34(2), pages 885-909, June.
    11. Joshua Habiger & David Watts & Michael Anderson, 2017. "Multiple testing with heterogeneous multinomial distributions," Biometrics, The International Biometric Society, vol. 73(2), pages 562-570, June.
    12. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    13. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    14. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    15. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    16. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    17. Jiaying Gu & Roger Koenker, 2016. "On a Problem of Robbins," International Statistical Review, International Statistical Institute, vol. 84(2), pages 224-244, August.
    18. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    19. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    20. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.

    More about this item

    Keywords

    FDR; Multiple comparisons; Power;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:98:y:2016:i:c:p:60-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.