IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005751.html
   My bibliography  Save this article

Identifying parameter regions for multistationarity

Author

Listed:
  • Carsten Conradi
  • Elisenda Feliu
  • Maya Mincheva
  • Carsten Wiuf

Abstract

Mathematical modelling has become an established tool for studying the dynamics of biological systems. Current applications range from building models that reproduce quantitative data to identifying systems with predefined qualitative features, such as switching behaviour, bistability or oscillations. Mathematically, the latter question amounts to identifying parameter values associated with a given qualitative feature. We introduce a procedure to partition the parameter space of a parameterized system of ordinary differential equations into regions for which the system has a unique or multiple equilibria. The procedure is based on the computation of the Brouwer degree, and it creates a multivariate polynomial with parameter depending coefficients. The signs of the coefficients determine parameter regions with and without multistationarity. A particular strength of the procedure is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell signalling, and show that in many cases we obtain a complete partitioning of the parameter space with respect to multistationarity.Author summary: Mathematical modelling has become an important tool in biology. As modelling requires separating the essential from the ordinary, there is never just one model but a collection thereof. To understand biology through modelling it is therefore crucial to be able to tell which of these models are capable of reproducing an observed behaviour and which are not. For example, to understand cellular decision making, models allowing multiple equilibria are studied and one asks which models allow for this behaviour. Here we describe a procedure that links the existence of a unique and of multiple equilibria to the sign of a single expression. We demonstrate the usefulness of the procedure by applying it to models of gene transcription and cellular signalling.

Suggested Citation

  • Carsten Conradi & Elisenda Feliu & Maya Mincheva & Carsten Wiuf, 2017. "Identifying parameter regions for multistationarity," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
  • Handle: RePEc:plo:pcbi00:1005751
    DOI: 10.1371/journal.pcbi.1005751
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005751
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005751&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Irene Otero-Muras & Pencho Yordanov & Joerg Stelling, 2017. "Chemical Reaction Network Theory elucidates sources of multistability in interferon signaling," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-28, April.
    2. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    2. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    3. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    5. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    6. Sui Huang, 2010. "Cell Lineage Determination in State Space: A Systems View Brings Flexibility to Dogmatic Canonical Rules," PLOS Biology, Public Library of Science, vol. 8(5), pages 1-4, May.
    7. Christoph Stelzer & Yaakov Benenson, 2020. "Precise determination of input-output mapping for multimodal gene circuits using data from transient transfection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-30, November.
    8. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    10. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    12. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    13. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Frank Freyer & James A Roberts & Petra Ritter & Michael Breakspear, 2012. "A Canonical Model of Multistability and Scale-Invariance in Biological Systems," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-15, August.
    15. Bonassi Fernando V. & You Lingchong & West Mike, 2011. "Bayesian Learning from Marginal Data in Bionetwork Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, October.
    16. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.
    17. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.
    18. Jiménez-Valdivia, F.A. & Campos-Cantón, Eric, 2024. "Coexistence of stable states in a parametric family of bimodal maps," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    19. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    20. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.