IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005700.html
   My bibliography  Save this article

Extracting replicable associations across multiple studies: Empirical Bayes algorithms for controlling the false discovery rate

Author

Listed:
  • David Amar
  • Ron Shamir
  • Daniel Yekutieli

Abstract

In almost every field in genomics, large-scale biomedical datasets are used to report associations. Extracting associations that recur across multiple studies while controlling the false discovery rate is a fundamental challenge. Here, we propose a new method to allow joint analysis of multiple studies. Given a set of p-values obtained from each study, the goal is to identify associations that recur in at least k > 1 studies while controlling the false discovery rate. We propose several new algorithms that differ in how the study dependencies are modeled, and compare them and extant methods under various simulated scenarios. The top algorithm, SCREEN (Scalable Cluster-based REplicability ENhancement), is our new algorithm that works in three stages: (1) clustering an estimated correlation network of the studies, (2) learning replicability (e.g., of genes) within clusters, and (3) merging the results across the clusters. When we applied SCREEN to two real datasets it greatly outperformed the results obtained via standard meta-analysis. First, on a collection of 29 case-control gene expression cancer studies, we detected a large set of consistently up-regulated genes related to proliferation and cell cycle regulation. These genes are both consistently up-regulated across many cancer studies, and are well connected in known gene networks. Second, on a recent pan-cancer study that examined the expression profiles of patients with and without mutations in the HLA complex, we detected a large active module of up-regulated genes that are both related to immune responses and are well connected in known gene networks. This module covers thrice more genes as compared to the original study at a similar false discovery rate, demonstrating the high power of SCREEN. An implementation of SCREEN is available in the supplement.Author summary: When analyzing results from multiple studies, extracting replicated associations is the first step towards making new discoveries. The standard approach for this task is to use meta-analysis methods, which usually make an underlying null hypothesis that a gene has no effect in all studies. On the other hand, in replicability analysis we explicitly require that the gene will manifest a recurring pattern of effects. In this study we develop new algorithms for replicability analysis that are both scalable (i.e., can handle many studies) and allow controlling the false discovery rate. We show that our main algorithm called SCREEN (Scalable Cluster-based REplicability ENhancement) outperforms the other methods in simulated scenarios. Moreover, when applied to real datasets, SCREEN greatly extended the results of the meta-analysis, and can even facilitate detection of new biological results.

Suggested Citation

  • David Amar & Ron Shamir & Daniel Yekutieli, 2017. "Extracting replicable associations across multiple studies: Empirical Bayes algorithms for controlling the false discovery rate," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
  • Handle: RePEc:plo:pcbi00:1005700
    DOI: 10.1371/journal.pcbi.1005700
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005700
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005700&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John P A Ioannidis, 2005. "Why Most Published Research Findings Are False," PLOS Medicine, Public Library of Science, vol. 2(8), pages 1-1, August.
    2. John D. Storey, 2007. "The optimal discovery procedure: a new approach to simultaneous significance testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 347-368, June.
    3. Efron, Bradley, 2009. "Empirical Bayes Estimates for Large-Scale Prediction Problems," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1015-1028.
    4. Efron, Bradley, 2007. "Correlation and Large-Scale Simultaneous Significance Testing," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 93-103, March.
    5. Yoav Benjamini & Ruth Heller, 2008. "Screening for Partial Conjunction Hypotheses," Biometrics, The International Biometric Society, vol. 64(4), pages 1215-1222, December.
    6. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    7. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hillary Koch & Cheryl A. Keller & Guanjue Xiang & Belinda Giardine & Feipeng Zhang & Yicheng Wang & Ross C. Hardison & Qunhua Li, 2022. "CLIMB: High-dimensional association detection in large scale genomic data," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    2. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    3. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    4. Gordon, Alexander & Chen, Linlin & Glazko, Galina & Yakovlev, Andrei, 2009. "Balancing type one and two errors in multiple testing for differential expression of genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1622-1629, March.
    5. Lee, Donghwan & Lee, Youngjo, 2016. "Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 1-13.
    6. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    7. Lim Johan & Kim Jayoun & Kim Sang-cheol & Yu Donghyeon & Kim Kyunga & Kim Byung Soo, 2012. "Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-30, February.
    8. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    9. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    10. Chen Xu & Jiahua Chen, 2014. "The Sparse MLE for Ultrahigh-Dimensional Feature Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1257-1269, September.
    11. Li, Feng & Seillier-Moiseiwitsch, Françoise & Korostyshevskiy, Valeriy R., 2011. "Region-based statistical analysis of 2D PAGE images," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3059-3072, November.
    12. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    13. Ali Karimnezhad, 2022. "A simple yet efficient method of local false discovery rate estimation designed for genome-wide association data analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 159-180, March.
    14. David R. Bickel, 2011. "Estimating the Null Distribution to Adjust Observed Confidence Levels for Genome-Scale Screening," Biometrics, The International Biometric Society, vol. 67(2), pages 363-370, June.
    15. Bradley Efron, 2007. "Doing thousands of hypothesis tests at the same time," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 3-21.
    16. Youngjo Lee & Jan F. Bjørnstad, 2013. "Extended likelihood approach to large-scale multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 553-575, June.
    17. Pallavi Basu & Luella Fu & Alessio Saretto & Wenguang Sun, 2021. "Empirical Bayes Control of the False Discovery Exceedance," Working Papers 2115, Federal Reserve Bank of Dallas.
    18. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    19. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    20. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.