IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005628.html
   My bibliography  Save this article

High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE

Author

Listed:
  • Stefano Castellana
  • Caterina Fusilli
  • Gianluigi Mazzoccoli
  • Tommaso Biagini
  • Daniele Capocefalo
  • Massimo Carella
  • Angelo Luigi Vescovi
  • Tommaso Mazza

Abstract

24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.Author summary: The mitochondrion is an organelle floating in the cytoplasm of almost all eukaryotic cells. Its primary function is to generate energy. It contains an independent DNA (mtDNA), which is inherited maternally in many organisms. This DNA is highly susceptible to mutations since it does not possess the robust DNA repair mechanisms proper of the nuclear DNA. Mutations in the mtDNA were associated to several inherited and acquired mitochondrial diseases, including Alzheimer and Parkinson diseases, and cancer. The assessment of the mutation-disease causal link is an onerous task. It requires important laboratory skills/equipment and, often, an animal facility, which are not always available to any laboratory altogether. More and more often, one falls back on software solutions that rely on structural and functional characteristics of proteins to predict the putative harmfulness of a mutation. Many have been implemented and tested on the nuclear proteins, but only a few were finely tuned to the “neglected genome”. Our work not only presents APOGEE, a machine-learning-based predictor that outperforms all existing predictors in reliability and sensitivity, but it makes freely available the APOGEE’s predictions for all the mitochondrial missense mutations in MitImpact.

Suggested Citation

  • Stefano Castellana & Caterina Fusilli & Gianluigi Mazzoccoli & Tommaso Biagini & Daniele Capocefalo & Massimo Carella & Angelo Luigi Vescovi & Tommaso Mazza, 2017. "High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-12, June.
  • Handle: RePEc:plo:pcbi00:1005628
    DOI: 10.1371/journal.pcbi.1005628
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005628
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005628&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel M. Jordan & Stephan G. Frangakis & Christelle Golzio & Christopher A. Cassa & Joanne Kurtzberg & Erica E. Davis & Shamil R. Sunyaev & Nicholas Katsanis, 2015. "Identification of cis-suppression of human disease mutations by comparative genomics," Nature, Nature, vol. 524(7564), pages 225-229, August.
    2. Kurt Hornik & Christian Buchta & Achim Zeileis, 2009. "Open-source machine learning: R meets Weka," Computational Statistics, Springer, vol. 24(2), pages 225-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souhila Ghanem & Raphaël Couturier & Pablo Gregori, 2021. "An Accurate and Easy to Interpret Binary Classifier Based on Association Rules Using Implication Intensity and Majority Vote," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
    2. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    3. Mariane S. Reis & Maria Isabel S. Escada & Luciano V. Dutra & Sidnei J. S. Sant’Anna & Nathan D. Vogt, 2018. "Towards a Reproducible LULC Hierarchical Class Legend for Use in the Southwest of Pará State, Brazil: A Comparison with Remote Sensing Data-Driven Hierarchies," Land, MDPI, vol. 7(2), pages 1-29, May.
    4. Rashid Mehmood & Muhammad Riaz & Ronald Does, 2013. "Efficient power computation for r out of m runs rules schemes," Computational Statistics, Springer, vol. 28(2), pages 667-681, April.
    5. Maria Janicka & Bogumiła Pawluśkiewicz & Tomasz Gnatowski, 2023. "Preliminary Results of the Introduction of Dicotyledonous Meadow Species," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    6. Fabian Meyer-Brötz & Edgar Schiebel & Leo Brecht, 2017. "Experimental evaluation of parameter settings in calculation of hybrid similarities: effects of first- and second-order similarity, edge cutting, and weighting factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1307-1325, June.
    7. Chi-Chang Chang & Tse-Hung Huang & Pei-Wei Shueng & Ssu-Han Chen & Chun-Chia Chen & Chi-Jie Lu & Yi-Ju Tseng, 2021. "Developing a Stacked Ensemble-Based Classification Scheme to Predict Second Primary Cancers in Head and Neck Cancer Survivors," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    8. Ana D. Maldonado & Darío Ramos-López & Pedro A. Aguilera, 2018. "A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    9. Gustavo Cattelan Nobre & Elaine Tavares, 2017. "Scientific literature analysis on big data and internet of things applications on circular economy: a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 463-492, April.
    10. Bogdan Oancea, 2023. "Automatic Product Classification Using Supervised Machine Learning Algorithms in Price Statistics," Mathematics, MDPI, vol. 11(7), pages 1-32, March.
    11. David Fernández-Nogueira & Eduardo Corbelle-Rico, 2019. "Determinants of Land Use/Cover Change in the Iberian Peninsula (1990–2012) at Municipal Level," Land, MDPI, vol. 9(1), pages 1-12, December.
    12. Hao-Yun Kao & Chi-Chang Chang & Chin-Fang Chang & Ying-Chen Chen & Chalong Cheewakriangkrai & Ya-Ling Tu, 2022. "Associations between Sex and Risk Factors for Predicting Chronic Kidney Disease," IJERPH, MDPI, vol. 19(3), pages 1-11, January.
    13. Nai-Hua Chen, 2020. "Exploring the Cognitive and Emotional Impact of Online Climate Change Videos on Viewers," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    14. Simon Urbanek, 2009. "How to talk to strangers: ways to leverage connectivity between R, Java and Objective C," Computational Statistics, Springer, vol. 24(2), pages 303-311, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.