IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005274.html
   My bibliography  Save this article

Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs

Author

Listed:
  • Nadezda Kryuchkova-Mostacci
  • Marc Robinson-Rechavi

Abstract

The ortholog conjecture implies that functional similarity between orthologous genes is higher than between paralogs. It has been supported using levels of expression and Gene Ontology term analysis, although the evidence was rather weak and there were also conflicting reports. In this study on 12 species we provide strong evidence of high conservation in tissue-specificity between orthologs, in contrast to low conservation between within-species paralogs. This allows us to shed a new light on the evolution of gene expression patterns. While there have been several studies of the correlation of expression between species, little is known about the evolution of tissue-specificity itself. Ortholog tissue-specificity is strongly conserved between all tetrapod species, with the lowest Pearson correlation between mouse and frog at r = 0.66. Tissue-specificity correlation decreases strongly with divergence time. Paralogs in human show much lower conservation, even for recent Primate-specific paralogs. When both paralogs from ancient whole genome duplication tissue-specific paralogs are tissue-specific, it is often to different tissues, while other tissue-specific paralogs are mostly specific to the same tissue. The same patterns are observed using human or mouse as focal species, and are robust to choices of datasets and of thresholds. Our results support the following model of evolution: in the absence of duplication, tissue-specificity evolves slowly, and tissue-specific genes do not change their main tissue of expression; after small-scale duplication the less expressed paralog loses the ancestral specificity, leading to an immediate difference between paralogs; over time, both paralogs become more broadly expressed, but remain poorly correlated. Finally, there is a small number of paralog pairs which stay tissue-specific with the same main tissue of expression, for at least 300 million years.Author Summary: From specific examples, it has been assumed by comparative biologists that the same gene in different species has the same function, whereas duplication of a gene inside one species to create several copies allows them to acquire different functions. Yet this model was little tested until recently, and then has proven harder than expected to confirm. One of the problems is defining "function" in a way which can be easily studied. We introduce a new way of considering function: how specific is the activity ("expression") of a gene? Genes which are specific to certain tissues have functions related to these tissues, whereas genes which are broadly active over many or all tissues have more general functions for the organism. We find that this "tissue-specificity" evolves very slowly in the absence of duplication, while immediately after duplication the new gene copy differs. This shows that indeed duplication leads to a strong increase in the evolution of new functions.

Suggested Citation

  • Nadezda Kryuchkova-Mostacci & Marc Robinson-Rechavi, 2016. "Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-13, December.
  • Handle: RePEc:plo:pcbi00:1005274
    DOI: 10.1371/journal.pcbi.1005274
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005274
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005274&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wickham, Hadley, 2011. "The Split-Apply-Combine Strategy for Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i01).
    2. David Brawand & Magali Soumillon & Anamaria Necsulea & Philippe Julien & Gábor Csárdi & Patrick Harrigan & Manuela Weier & Angélica Liechti & Ayinuer Aximu-Petri & Martin Kircher & Frank W. Albert & U, 2011. "The evolution of gene expression levels in mammalian organs," Nature, Nature, vol. 478(7369), pages 343-348, October.
    3. Adrian M Altenhoff & Romain A Studer & Marc Robinson-Rechavi & Christophe Dessimoz, 2012. "Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah Schmidbaur & Akane Kawaguchi & Tereza Clarence & Xiao Fu & Oi Pui Hoang & Bob Zimmermann & Elena A. Ritschard & Anton Weissenbacher & Jamie S. Foster & Spencer V. Nyholm & Paul A. Bates & Carol, 2022. "Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    2. Miller, Christine M.F. & Waterhouse, Hannah & Harter, Thomas & Fadel, James G. & Meyer, Deanne, 2020. "Quantifying the uncertainty in nitrogen application and groundwater nitrate leaching in manure based cropping systems," Agricultural Systems, Elsevier, vol. 184(C).
    3. Sean McKenzie & Hilary Parkinson & Jane Mangold & Mary Burrows & Selena Ahmed & Fabian Menalled, 2018. "Perceptions, Experiences, and Priorities Supporting Agroecosystem Management Decisions Differ among Agricultural Producers, Consultants, and Researchers," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    4. Ahmad Alsaber & Jiazhu Pan & Adeeba Al-Herz & Dhary S. Alkandary & Adeeba Al-Hurban & Parul Setiya & on behalf of the KRRD Group, 2020. "Influence of Ambient Air Pollution on Rheumatoid Arthritis Disease Activity Score Index," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    5. Fulya Gokalp Yavuz & Barret Schloerke, 2020. "Parallel computing in linear mixed models," Computational Statistics, Springer, vol. 35(3), pages 1273-1289, September.
    6. Rebecca Hong & Monica Perkins & Belinda J. Gabbe & Lincoln M. Tracy, 2022. "Comparing Peak Burn Injury Times and Characteristics in Australia and New Zealand," IJERPH, MDPI, vol. 19(15), pages 1-9, August.
    7. Merl, Robert & Stöckl, Thomas & Palan, Stefan, 2023. "Insider trading regulation and shorting constraints. Evaluating the joint effects of two market interventions," Journal of Banking & Finance, Elsevier, vol. 154(C).
    8. Paul J McMurdie & Susan Holmes, 2014. "Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-12, April.
    9. Debanjan Mukherjee & Ângelo Ferreira Chora & Jean-Christophe Lone & Ricardo S. Ramiro & Birte Blankenhaus & Karine Serre & Mário Ramirez & Isabel Gordo & Marc Veldhoen & Patrick Varga-Weisz & Maria M., 2022. "Host lung microbiota promotes malaria-associated acute respiratory distress syndrome," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Eff, Ellis Anthon, 2013. "Settlers and surnames: An atlas illustrating the origins of settlers in 19th century America," MPRA Paper 56296, University Library of Munich, Germany.
    11. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk_v1, Center for Open Science.
    12. Nives Škunca & Matko Bošnjak & Anita Kriško & Panče Panov & Sašo Džeroski & Tomislav Šmuc & Fran Supek, 2013. "Phyletic Profiling with Cliques of Orthologs Is Enhanced by Signatures of Paralogy Relationships," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-14, January.
    13. Nicole Smialek & Joachim Pander & Arne Heinrich & Juergen Geist, 2021. "Sneaker, Dweller and Commuter: Evaluating Fish Behavior in Net-Based Monitoring at Hydropower Plants—A Case Study on Brown Trout ( Salmo trutta )," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    14. Stefan LINGNER & Eiko THIESSEN & Kerrin MÜLLER & Eberhard HARTUNG, 2018. "Dry Biomass Estimation of Hedge Banks: Allometric Equation vs. Structure from Motion via Unmanned Aerial Vehicle," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(4), pages 149-156.
    15. Wilson Lara & Stella Bogino & Felipe Bravo, 2018. "Multilevel analysis of dendroclimatic series with the R-package BIOdry," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-23, May.
    16. Mammen, Enno & Wilke, Ralf A. & Zapp, Kristina Maria, 2022. "Estimation of group structures in panel models with individual fixed effects," ZEW Discussion Papers 22-023, ZEW - Leibniz Centre for European Economic Research.
    17. Marie Sémon & Marion Mouginot & Manon Peltier & Claudine Corneloup & Philippe Veber & Laurent Guéguen & Sophie Pantalacci, 2025. "Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    18. Sara Minoli & Jonas Jägermeyr & Senthold Asseng & Anton Urfels & Christoph Müller, 2022. "Global crop yields can be lifted by timely adaptation of growing periods to climate change," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. L. Marie Ende & Katja Knöllinger & Moritz Keil & Angelika J. Fiedler & Marianne Lauerer, 2021. "Possibly Invasive New Bioenergy Crop Silphium perfoliatum : Growth and Reproduction Are Promoted in Moist Soil," Agriculture, MDPI, vol. 11(1), pages 1-13, January.
    20. Carrie M. Leslie & Alva I. Strand & Elizabeth A. Ross & Giovanni Tolentino Ramos & Eli S. Bridge & Phillip B. Chilson & Christopher E. Anderson, 2021. "Shifting the Balance among the ‘Three Rs of Sustainability:’ What Motivates Reducing and Reusing?," Sustainability, MDPI, vol. 13(18), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.