IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005178.html
   My bibliography  Save this article

Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan

Author

Listed:
  • Elizabeth N Davison
  • Benjamin O Turner
  • Kimberly J Schlesinger
  • Michael B Miller
  • Scott T Grafton
  • Danielle S Bassett
  • Jean M Carlson

Abstract

Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism—hypergraph cardinality—we investigate individual variations in two separate, complementary data sets. The first data set (“multi-task”) consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set (“age-memory”), in which 95 individuals, aged 18–75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.Author Summary: Complex patterns of activity in each individual human brain generate the unique range of thoughts and behaviors that person experiences. Individual differences in ability, age, state of mind, and other characteristics are tied to differences in brain activity, but determination of the exact nature of these relationships has been limited by the intrinsic complexity of the brain. Here, we apply dynamic network theory to quantify fundamental features of individual neural activity. We represent functional connections between brain regions as a time varying network, and then identify groups of these interactions that exhibit similar behavior over time. The result of this construction is referred to as a hypergraph, and each grouping within the hypergraph is called a hyperedge. We find that the number of these hyperedges in an individual’s hypergraph is a trait-like metric, with considerable variation across the population of subjects, but remarkable consistency within each subject as they perform different tasks. We find a significant correspondence between this metric and the subject’s age, indicating that the dynamics of functional brain activity in older individuals tends to be more dynamically segregated. This new insight into age-related changes in the dynamics of cognitive processing expands our knowledge of the effects of age on brain function and confirms our methods as promising for quantifying and examining individual differences.

Suggested Citation

  • Elizabeth N Davison & Benjamin O Turner & Kimberly J Schlesinger & Michael B Miller & Scott T Grafton & Danielle S Bassett & Jean M Carlson, 2016. "Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-29, November.
  • Handle: RePEc:plo:pcbi00:1005178
    DOI: 10.1371/journal.pcbi.1005178
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005178
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005178&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Danielle S Bassett & Nicholas F Wymbs & M Puck Rombach & Mason A Porter & Peter J Mucha & Scott T Grafton, 2013. "Task-Based Core-Periphery Organization of Human Brain Dynamics," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-16, September.
    2. Lubin Wang & Longfei Su & Hui Shen & Dewen Hu, 2012. "Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    3. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Jo, Hang-Hyun & Moon, Eunyoung, 2016. "Dynamical complexity in the perception-based network formation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 282-292.
    4. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Mary F. McGuire, 2014. "Pancreatic Cancer: Insights from Counterterrorism Theories," Decision Analysis, INFORMS, vol. 11(4), pages 265-276, December.
    6. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    7. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    8. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    9. Vesselkova, Alexandr & Riikonena, Antti & Hämmäinena & Heikki, 2015. "Evolution of mobile handset feature dependences," 26th European Regional ITS Conference, Madrid 2015 127192, International Telecommunications Society (ITS).
    10. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    11. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    12. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    13. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    14. Susan Dina Ghiassian & Jörg Menche & Albert-László Barabási, 2015. "A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    15. Jean-Gabriel Young & Antoine Allard & Laurent Hébert-Dufresne & Louis J Dubé, 2015. "A Shadowing Problem in the Detection of Overlapping Communities: Lifting the Resolution Limit through a Cascading Procedure," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-19, October.
    16. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    17. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    18. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    19. Le Ou-Yang & Dao-Qing Dai & Xiao-Fei Zhang, 2013. "Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-18, May.
    20. Dongxiao He & Di Jin & Carlos Baquero & Dayou Liu, 2014. "Link Community Detection Using Generative Model and Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.