IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005079.html
   My bibliography  Save this article

The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community

Author

Listed:
  • Xiaokan Guo
  • James Q Boedicker

Abstract

The activity of a biological community is the outcome of complex processes involving interactions between community members. It is often unclear how to accurately incorporate these interactions into predictive models. Previous work has shown a range of positive and negative metabolic pairwise interactions between species. Here we examine the ability of a modified general Lotka-Volterra model with cell-cell interaction coefficients to predict the overall metabolic rate of a well-mixed microbial community comprised of four heterotrophic natural isolates, experimentally quantifying the strengths of two, three, and four-species interactions. Within this community, interactions between any pair of microbial species were positive, while higher-order interactions, between 3 or more microbial species, slightly modulated community metabolism. For this simple community, the metabolic rate of can be well predicted only with taking into account pairwise interactions. Simulations using the experimentally determined interaction parameters revealed that spatial heterogeneity in the distribution of cells increased the importance of multispecies interactions in dictating function at both the local and global scales.Author Summary: Many wild microbial ecosystems contain hundreds to thousands of species, suggesting that interactions between species likely play an important role in regulating the behavior of such complex cellular networks. Predicting how these interactions impact the overall activity of microbial communities remains a challenge. Here we quantify the contribution of interactions between more than two species to the overall metabolic rate of a mixture of four freshwater bacteria. We systematically measure interactions between these species and use theoretical models to examine the influence cell-cell interactions on spatially non-uniform microbial populations. Our results demonstrate that although interactions between species are key regulators of system behavior, only considering interactions between pairs of species is sufficient to predict ecosystem activity. Simulations demonstrate that activity at both the single-cell and population level would be strongly influenced by how microbes are distributed in space. These findings improve our understanding of how best to examine groups of microbes that coexist in environments such as soil, water, and the human body.

Suggested Citation

  • Xiaokan Guo & James Q Boedicker, 2016. "The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-13, September.
  • Handle: RePEc:plo:pcbi00:1005079
    DOI: 10.1371/journal.pcbi.1005079
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005079
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005079&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hasan Celiker & Jeff Gore, 2014. "Clustering in community structure across replicate ecosystems following a long-term bacterial evolution experiment," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    3. Xavier Raynaud & Naoise Nunan, 2014. "Spatial Ecology of Bacteria at the Microscale in Soil," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    4. Charles K Fisher & Pankaj Mehta, 2014. "Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    5. Shiri Freilich & Raphy Zarecki & Omer Eilam & Ella Shtifman Segal & Christopher S. Henry & Martin Kupiec & Uri Gophna & Roded Sharan & Eytan Ruppin, 2011. "Competitive and cooperative metabolic interactions in bacterial communities," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senka Čaušević & Manupriyam Dubey & Marian Morales & Guillem Salazar & Vladimir Sentchilo & Nicolas Carraro & Hans-Joachim Ruscheweyh & Shinichi Sunagawa & Jan Roelof van der Meer, 2024. "Niche availability and competitive loss by facilitation control proliferation of bacterial strains intended for soil microbiome interventions," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Sean M Gibbons & Sean M Kearney & Chris S Smillie & Eric J Alm, 2017. "Two dynamic regimes in the human gut microbiome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    3. Vanessa R. Marcelino & Caitlin Welsh & Christian Diener & Emily L. Gulliver & Emily L. Rutten & Remy B. Young & Edward M. Giles & Sean M. Gibbons & Chris Greening & Samuel C. Forster, 2023. "Disease-specific loss of microbial cross-feeding interactions in the human gut," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    5. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    6. Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    7. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    8. Kenta Suzuki & Masato S. Abe & Daiki Kumakura & Shinji Nakaoka & Fuki Fujiwara & Hirokuni Miyamoto & Teruno Nakaguma & Mashiro Okada & Kengo Sakurai & Shohei Shimizu & Hiroyoshi Iwata & Hiroshi Masuya, 2022. "Chemical-Mediated Microbial Interactions Can Reduce the Effectiveness of Time-Series-Based Inference of Ecological Interaction Networks," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    9. James D Brunner & Nicholas Chia, 2020. "Minimizing the number of optimizations for efficient community dynamic flux balance analysis," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-20, September.
    10. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    11. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    12. Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.
    13. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    14. Xianglai Li & Zhao Zhou & Wenna Li & Yajun Yan & Xiaolin Shen & Jia Wang & Xinxiao Sun & Qipeng Yuan, 2022. "Design of stable and self-regulated microbial consortia for chemical synthesis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    16. Ren Dodge & Eric W. Jones & Haolong Zhu & Benjamin Obadia & Daniel J. Martinez & Chenhui Wang & Andrés Aranda-Díaz & Kevin Aumiller & Zhexian Liu & Marco Voltolini & Eoin L. Brodie & Kerwyn Casey Huan, 2023. "A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Iris Chen & Yogeshwar D Kelkar & Yu Gu & Jie Zhou & Xing Qiu & Hulin Wu, 2017. "High-dimensional linear state space models for dynamic microbial interaction networks," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-20, November.
    18. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    19. Xiaoyuan Liu & Hayato Ushijima-Mwesigwa & Avradip Mandal & Sarvagya Upadhyay & Ilya Safro & Arnab Roy, 2022. "Leveraging special-purpose hardware for local search heuristics," Computational Optimization and Applications, Springer, vol. 82(1), pages 1-29, May.
    20. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.