IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6981d10.1038_nature02406.html
   My bibliography  Save this article

Functional interactions between receptors in bacterial chemotaxis

Author

Listed:
  • Victor Sourjik

    (Harvard University
    the Rowland Institute at Harvard
    ZMBH, University of Heidelberg)

  • Howard C. Berg

    (Harvard University
    the Rowland Institute at Harvard)

Abstract

Bacterial chemotaxis is a model system for signal transduction, noted for its relative simplicity, high sensitivity, wide dynamic range and robustness. Changes in ligand concentrations are sensed by a protein assembly consisting of transmembrane receptors, a coupling protein (CheW) and a histidine kinase (CheA)1,2,3,4. In Escherichia coli, these components are organized at the cell poles in tight clusters that contain several thousand copies of each protein1,4,5,6. Here we studied the effects of variation in the composition of clusters on the activity of the kinase and its sensitivity to attractant stimuli, monitoring responses in vivo using fluorescence resonance energy transfer. Our results indicate that assemblies of bacterial chemoreceptors work in a highly cooperative manner, mimicking the behaviour of allosteric proteins. Conditions that favour steep responses to attractants in mutants with homogeneous receptor populations also enhance the sensitivity of the response in wild-type cells. This is consistent with a number of models7,8,9,10,11 that assume long-range cooperative interactions between receptors as a general mechanism for signal integration and amplification.

Suggested Citation

  • Victor Sourjik & Howard C. Berg, 2004. "Functional interactions between receptors in bacterial chemotaxis," Nature, Nature, vol. 428(6981), pages 437-441, March.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6981:d:10.1038_nature02406
    DOI: 10.1038/nature02406
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02406
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Junjiajia Long & Steven W Zucker & Thierry Emonet, 2017. "Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-25, March.
    3. Robert G Endres & Joseph J Falke & Ned S Wingreen, 2007. "Chemotaxis Receptor Complexes: From Signaling to Assembly," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-9, July.
    4. Stephan Eismann & Robert G Endres, 2015. "Protein Connectivity in Chemotaxis Receptor Complexes," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-21, December.
    5. Burton W Andrews & Tau-Mu Yi & Pablo A Iglesias, 2006. "Optimal Noise Filtering in the Chemotactic Response of Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-12, November.
    6. Diana Clausznitzer & Gabriele Micali & Silke Neumann & Victor Sourjik & Robert G Endres, 2014. "Predicting Chemical Environments of Bacteria from Receptor Signaling," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6981:d:10.1038_nature02406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.