IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004610.html
   My bibliography  Save this article

From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach

Author

Listed:
  • Goker Erdogan
  • Ilker Yildirim
  • Robert A Jacobs

Abstract

People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models—that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model’s percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects’ ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.Author Summary: When viewing an object, people perceive the object’s shape. Similarly, when grasping the same object, they also perceive its shape. In general, the perceived shape is identical in these two scenarios, illustrating modality invariance, an important type of perceptual constancy. Modality invariance suggests that people infer a modality-independent, conceptual representation that is the same regardless of the modality used to sense the environment. If so, how do people infer modality-independent representations from modality-specific sensory signals? We present a hypothesis about the components that any system will include if it infers modality-independent representations from sensory signals. This hypothesis is instantiated in a computational model that infers object shape representations from visual or haptic (i.e., active touch) signals. The model shows perfect modality invariance—it infers the same shape representations regardless of the sensory modality used to sense objects. The model also provides a highly accurate account of data collected in an experiment in which people judged the similarity of pairs of objects that were viewed, grasped, or both. Conceptually, our research contributes to our understanding of modality invariance. Methodologically, it contributes to cognitive modeling by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.

Suggested Citation

  • Goker Erdogan & Ilker Yildirim & Robert A Jacobs, 2015. "From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-32, November.
  • Handle: RePEc:plo:pcbi00:1004610
    DOI: 10.1371/journal.pcbi.1004610
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004610
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004610&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    2. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    3. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    4. Editors The, 2007. "From the Editors," Basic Income Studies, De Gruyter, vol. 2(1), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua S. Rule & Steven T. Piantadosi & Andrew Cropper & Kevin Ellis & Maxwell Nye & Joshua B. Tenenbaum, 2024. "Symbolic metaprogram search improves learning efficiency and explains rule learning in humans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    3. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    4. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    5. Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    6. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    7. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    8. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    9. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    10. J. Ramsay, 1969. "Some statistical considerations in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 167-182, June.
    11. Massimiliano Agovino & Maria Ferrara & Antonio Garofalo, 2017. "The driving factors of separate waste collection in Italy: a multidimensional analysis at provincial level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2297-2316, December.
    12. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    13. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
    14. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    15. Raffaella Piccarreta, 2012. "Graphical and Smoothing Techniques for Sequence Analysis," Sociological Methods & Research, , vol. 41(2), pages 362-380, May.
    16. Xiaomeng Cao & Yuan Gao & Jingwei Cui & Shuangbiao Han & Lei Kang & Sha Song & Chengshan Wang, 2020. "Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China," Energies, MDPI, vol. 13(8), pages 1-25, April.
    17. Pepermans, Roland & Verleye, Gino, 1998. "A unified Europe? How euro-attitudes relate to psychological differences between countries," Journal of Economic Psychology, Elsevier, vol. 19(6), pages 681-699, December.
    18. Hossein Safizadeh, M. & McKenna, David R., 1996. "Application of multidimensional scaling techniques to facilities layout," European Journal of Operational Research, Elsevier, vol. 92(1), pages 54-62, July.
    19. He, Jiayi & Shang, Pengjian & Xiong, Hui, 2018. "Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 210-221.
    20. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.