IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004464.html
   My bibliography  Save this article

Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data

Author

Listed:
  • Daniel Soudry
  • Suraj Keshri
  • Patrick Stinson
  • Min-hwan Oh
  • Garud Iyengar
  • Liam Paninski

Abstract

Inferring connectivity in neuronal networks remains a key challenge in statistical neuroscience. The “common input” problem presents a major roadblock: it is difficult to reliably distinguish causal connections between pairs of observed neurons versus correlations induced by common input from unobserved neurons. Available techniques allow us to simultaneously record, with sufficient temporal resolution, only a small fraction of the network. Consequently, naive connectivity estimators that neglect these common input effects are highly biased. This work proposes a “shotgun” experimental design, in which we observe multiple sub-networks briefly, in a serial manner. Thus, while the full network cannot be observed simultaneously at any given time, we may be able to observe much larger subsets of the network over the course of the entire experiment, thus ameliorating the common input problem. Using a generalized linear model for a spiking recurrent neural network, we develop a scalable approximate expected loglikelihood-based Bayesian method to perform network inference given this type of data, in which only a small fraction of the network is observed in each time bin. We demonstrate in simulation that the shotgun experimental design can eliminate the biases induced by common input effects. Networks with thousands of neurons, in which only a small fraction of the neurons is observed in each time bin, can be quickly and accurately estimated, achieving orders of magnitude speed up over previous approaches.Author Summary: Optical imaging of the activity in a neuronal network is limited by the scanning speed of the imaging device. Therefore, typically, only a small fixed part of the network is observed during the entire experiment. However, in such an experiment, it can be hard to infer from the observed activity patterns whether (1) a neuron A directly affects neuron B, or (2) another, unobserved neuron C affects both A and B. To deal with this issue, we propose a “shotgun” observation scheme, in which, at each time point, we observe a small changing subset of the neurons from the network. Consequently, many fewer neurons remain completely unobserved during the entire experiment, enabling us to eventually distinguish between cases (1) and (2) given sufficiently long experiments. Since previous inference algorithms cannot efficiently handle so many missing observations, we develop a scalable algorithm for data acquired using the shotgun observation scheme, in which only a small fraction of the neurons are observed in each time bin. Using this kind of simulated data, we show the algorithm is able to quickly infer connectivity in spiking recurrent networks with thousands of neurons.

Suggested Citation

  • Daniel Soudry & Suraj Keshri & Patrick Stinson & Min-hwan Oh & Garud Iyengar & Liam Paninski, 2015. "Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-30, October.
  • Handle: RePEc:plo:pcbi00:1004464
    DOI: 10.1371/journal.pcbi.1004464
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004464
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004464&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kwanghun Chung & Jenelle Wallace & Sung-Yon Kim & Sandhiya Kalyanasundaram & Aaron S. Andalman & Thomas J. Davidson & Julie J. Mirzabekov & Kelly A. Zalocusky & Joanna Mattis & Aleksandra K. Denisin &, 2013. "Structural and molecular interrogation of intact biological systems," Nature, Nature, vol. 497(7449), pages 332-337, May.
    2. Maxim Volgushev & Vladimir Ilin & Ian H Stevenson, 2015. "Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-31, March.
    3. Shin-ya Takemura & Arjun Bharioke & Zhiyuan Lu & Aljoscha Nern & Shiv Vitaladevuni & Patricia K. Rivlin & William T. Katz & Donald J. Olbris & Stephen M. Plaza & Philip Winston & Ting Zhao & Jane Anne, 2013. "A visual motion detection circuit suggested by Drosophila connectomics," Nature, Nature, vol. 500(7461), pages 175-181, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Friedrich & Weijian Yang & Daniel Soudry & Yu Mu & Misha B Ahrens & Rafael Yuste & Darcy S Peterka & Liam Paninski, 2017. "Multi-scale approaches for high-speed imaging and analysis of large neural populations," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-24, August.
    2. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toufiq Parag & Anirban Chakraborty & Stephen Plaza & Louis Scheffer, 2015. "A Context-Aware Delayed Agglomeration Framework for Electron Microscopy Segmentation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-19, May.
    2. Fu-Ting Hsiao & Hung-Jen Chien & Ya-Hsien Chou & Shih-Jung Peng & Mei-Hsin Chung & Tzu-Hui Huang & Li-Wen Lo & Chia-Ning Shen & Hsiu-Pi Chang & Chih-Yuan Lee & Chien-Chia Chen & Yung-Ming Jeng & Yu-We, 2023. "Transparent tissue in solid state for solvent-free and antifade 3D imaging," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shang, Ke-ke & Small, Michael & Yan, Wei-sheng, 2017. "Link direction for link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 767-776.
    4. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    5. Adam L Tyson & Charly V Rousseau & Christian J Niedworok & Sepiedeh Keshavarzi & Chryssanthi Tsitoura & Lee Cossell & Molly Strom & Troy W Margrie, 2021. "A deep learning algorithm for 3D cell detection in whole mouse brain image datasets," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-17, May.
    6. Kohei Otomo & Takaki Omura & Yuki Nozawa & Steven J. Edwards & Yukihiko Sato & Yuri Saito & Shigehiro Yagishita & Hitoshi Uchida & Yuki Watakabe & Kiyotada Naitou & Rin Yanai & Naruhiko Sahara & Satos, 2024. "descSPIM: an affordable and easy-to-build light-sheet microscope optimized for tissue clearing techniques," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Nikita Vladimirov & Fabian F. Voigt & Thomas Naert & Gabriela R. Araujo & Ruiyao Cai & Anna Maria Reuss & Shan Zhao & Patricia Schmid & Sven Hildebrand & Martina Schaettin & Dominik Groos & José María, 2024. "Benchtop mesoSPIM: a next-generation open-source light-sheet microscope for cleared samples," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Santiago Mañosas & Aritz Sanz & Cristina Ederra & Ainhoa Urbiola & Elvira Rojas-de-Miguel & Ainhoa Ostiz & Iván Cortés-Domínguez & Natalia Ramírez & Carlos Ortíz-de-Solórzano & Arantxa Villanueva & Ma, 2022. "An Image-Based Framework for the Analysis of the Murine Microvasculature: From Tissue Clarification to Computational Hemodynamics," Mathematics, MDPI, vol. 10(23), pages 1-20, December.
    10. Jiayi Wang & Mengke Zhao & Meina Wang & Dong Fu & Lin Kang & Yu Xu & Liming Shen & Shilin Jin & Liang Wang & Jing Liu, 2024. "Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    11. Jingtan Zhu & Xiaomei Liu & Zhang Liu & Yating Deng & Jianyi Xu & Kunxing Liu & Ruiying Zhang & Xizhi Meng & Peng Fei & Tingting Yu & Dan Zhu, 2024. "SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Jacqueline Cornean & Sebastian Molina-Obando & Burak Gür & Annika Bast & Giordano Ramos-Traslosheros & Jonas Chojetzki & Lena Lörsch & Maria Ioannidou & Rachita Taneja & Christopher Schnaitmann & Mari, 2024. "Heterogeneity of synaptic connectivity in the fly visual system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Kit D. Longden & Edward M. Rogers & Aljoscha Nern & Heather Dionne & Michael B. Reiser, 2023. "Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Burak Gür & Luisa Ramirez & Jacqueline Cornean & Freya Thurn & Sebastian Molina-Obando & Giordano Ramos-Traslosheros & Marion Silies, 2024. "Neural pathways and computations that achieve stable contrast processing tuned to natural scenes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Daniel P Riordan & Sushama Varma & Robert B West & Patrick O Brown, 2015. "Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-18, July.
    16. Hyoungjun Park & Myeongsu Na & Bumju Kim & Soohyun Park & Ki Hean Kim & Sunghoe Chang & Jong Chul Ye, 2022. "Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Kevin Yeh & Ishaan Sharma & Kianoush Falahkheirkhah & Matthew P. Confer & Andres C. Orr & Yen-Ting Liu & Yamuna Phal & Ruo-Jing Ho & Manu Mehta & Ankita Bhargava & Wenyan Mei & Georgina Cheng & John C, 2023. "Infrared spectroscopic laser scanning confocal microscopy for whole-slide chemical imaging," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Saha, Papri & Sarkar, Debasish, 2022. "Allometric scaling of von Neumann entropy in animal connectomes and its evolutionary aspect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    19. Junyoung Seo & Yeonbo Sim & Jeewon Kim & Hyunwoo Kim & In Cho & Hoyeon Nam & Young-Gyu Yoon & Jae-Byum Chang, 2022. "PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.