IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004416.html
   My bibliography  Save this article

SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing

Author

Listed:
  • Noushin Niknafs
  • Violeta Beleva-Guthrie
  • Daniel Q Naiman
  • Rachel Karchin

Abstract

Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones—cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8) can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine) small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can identify either a single tree in agreement with the authors, or a small set of trees, which include the authors’ preferred tree. Our results have implications for improved modeling of tumor evolution and the importance of multi-region tumor sequencing.Author Summary: Cancer is a genetic disease, driven by DNA mutations. Each tumor is composed of millions of cells with differing genetic profiles that compete with each other for resources in a process similar to Darwinian evolution. We describe a computational framework to model tumor evolution on the cellular level, using next-generation sequencing. The framework is the first to apply a rigorous statistical hypothesis test designed to inform a new search algorithm. Both the test and the algorithm are based on evolutionary principles. The utility of the framework is shown in computer simulations and by automated reconstruction of the cellular evolution underlying murine small cell lung cancers, acute myeloid leukemias and chronic lymophocytic leukemias, from three recent published studies.

Suggested Citation

  • Noushin Niknafs & Violeta Beleva-Guthrie & Daniel Q Naiman & Rachel Karchin, 2015. "SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-26, October.
  • Handle: RePEc:plo:pcbi00:1004416
    DOI: 10.1371/journal.pcbi.1004416
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004416
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004416&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helena R. Lourenço & Olivier C. Martin & Thomas Stützle, 2010. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 363-397, Springer.
    2. Nicholas Navin & Jude Kendall & Jennifer Troge & Peter Andrews & Linda Rodgers & Jeanne McIndoo & Kerry Cook & Asya Stepansky & Dan Levy & Diane Esposito & Lakshmi Muthuswamy & Alex Krasnitz & W. Rich, 2011. "Tumour evolution inferred by single-cell sequencing," Nature, Nature, vol. 472(7341), pages 90-94, April.
    3. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    4. Mel Greaves & Carlo C. Maley, 2012. "Clonal evolution in cancer," Nature, Nature, vol. 481(7381), pages 306-313, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Sandmann & Silja Richter & Xiaoyi Jiang & Julian Varghese, 2023. "Reconstructing Clonal Evolution—A Systematic Evaluation of Current Bioinformatics Approaches," IJERPH, MDPI, vol. 20(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    2. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    3. Heber F. Amaral & Sebastián Urrutia & Lars M. Hvattum, 2021. "Delayed improvement local search," Journal of Heuristics, Springer, vol. 27(5), pages 923-950, October.
    4. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    5. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2020. "Neural Networks Applied to Microsimulation: A Prediction Model for Pedestrian Crossing Time," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    6. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    7. repec:hal:journl:hal-04689665 is not listed on IDEAS
    8. Anurag Agarwal, 2009. "Theoretical insights into the augmented-neural-network approach for combinatorial optimization," Annals of Operations Research, Springer, vol. 168(1), pages 101-117, April.
    9. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Marti, Rafael, 1998. "A tabu search algorithm for the bipartite drawing problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 558-569, April.
    11. Song Li & Wenbin Yu & Fei Xie & Haitao Luo & Zhimin Liu & Weiwei Lv & Duanbo Shi & Dexin Yu & Peng Gao & Cheng Chen & Meng Wei & Wenhao Zhou & Jiaqian Wang & Zhikun Zhao & Xin Dai & Qian Xu & Xue Zhan, 2023. "Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    13. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    14. Nha Vo‐Thanh & Hans‐Peter Piepho, 2023. "Generating designs for comparative experiments with two blocking factors," Biometrics, The International Biometric Society, vol. 79(4), pages 3574-3585, December.
    15. Сластников С.А., 2014. "Применение Метаэвристических Алгоритмов Для Задачи Маршрутизации Транспорта," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 117-126, январь.
    16. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    17. Grolimund, Stephan & Ganascia, Jean-Gabriel, 1997. "Driving Tabu Search with case-based reasoning," European Journal of Operational Research, Elsevier, vol. 103(2), pages 326-338, December.
    18. repec:dar:wpaper:62383 is not listed on IDEAS
    19. Minghe Sun, 2007. "A Primogenitary Linked Quad Tree Approach for Solution Storage and Retrieval in Heuristic Binary Optimization," Working Papers 0009, College of Business, University of Texas at San Antonio.
    20. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    21. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    22. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.